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Background and Challenges

• Synopsys Customers' pressure points
– Larger designs, shorter design time:

− EDA application TAT (Turn Around Time) / Performance 

• Synopsys product teams’ pressure points
– Performance improvement (scalar, Parallel Processing)

− No runtime performance impact from new features and 
bug fixes 

• Greater need for reliable/consistent performance 
benchmarking



© Synopsys 2012 4

Types of Multi-Processors

• Architectures based on how memory is 
accessed
– SMP    -> Symmetric Multi-Processing (Uniform Memory Access)

– NUMA -> Non-Uniform Memory Access
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SMP Architecture
aka UMA
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NUMA Architecture
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Problem Statement

• How to run Benchmark tests with accuracy and 
repeatability on NUMA machines?
– Aiming for 1-3% variation without multiple runs for 

statistical averaging
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How Caching Affects Repeatability
Adds variance

• Cache hits and misses affects system performance

• Cache coloring/Page coloring helps reduce conflict 
misses

• Linux does not support page coloring
– True for all Linux variants (RedHat, SUSE)

– Peak performance is higher, but variability also higher
– Less deterministic with regards to cache performance
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NUMA Hardware settings
OS Setup

• Hardware BIOS settings

BIOS Setting Enabled Description

Turbo Boost N Dynamically shutdown unused cores to divert 
power to over-clock active cores

Hardware 
PreFetch

Y Pre-fetch data and instructions from memory 
to L2 cache.
Reduces memory read latency

Hyper-Threading N Provides 2 instruction threads per core

Hardware PreFetch Y Pre-fetch data and instructions from memory to L2 cache.
Reduces memory read latency

Turbo Boost N Dynamically shutdown unused cores to divert power to over-clock 
active cores
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NUMA Hardware settings
Binning

• Process of identifying similar performance 
machines

• All NUMA machines binned
– Identical performance machines grouped together

– Users run Benchmark tests on selected group
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Making Applications NUMA aware
numactl command
• No Code change required

• Applications were made NUMA aware during runtime to  ensure 
consistency in results
– Use numactl command: Controls NUMA policy for binding processes and/or 

shared memory to nodes

• LSF and UGE schedulers made NUMA aware
− In-house scheduler tool developed to achieve numactl functionality

Numactl option Description

-cpunodebind Only execute process on the cores of the 
selected nodes

-cpunodebind Only execute process on the cores of the selected node

-membind
Only  allocate  memory  from  selected nodes.   
Jobs will start swapping when enough memory is 
not available on these nodes

-membind
Only  allocate  memory  from  selected nodes.  Jobs will 
start swapping when enough memory is not available on 
these nodes

-preferred
Preferably allocate memory on node. If memory  
cannot  be allocated  there,  fall  back  to other 
nodes

-preferred
Preferably allocate memory on node. If memory  cannot  
be allocated  there,  fall  back  to other nodes

High Speed Bus
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Node 1High Speed Bus

Node 0
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Implementing NUMA Configurability
Cluster Settings to reduce variation and improve utilization

• Scheduler manages memory consumption and cores used on each node level
• SGE/LSF scheduler satisfies the following behavior

Job Type
Cores 
Required

Memory Required
Scheduler Behavior

CPU-Bind Memory-Bind

1 <= Total RAM on node Y Y

1 > Total RAM on node Y Y (preferred)

1 = Total RAM on machine Y Y (preferred)

Single 
Thread

1 <= Total RAM on node Y Y

1 > Total RAM on node Y Y (preferred)

1 = Total RAM on machine Y Y (preferred)

> Total cores 
on machine

N/A Job remains Pending

Multi 
Thread

Single 
Thread

> Total cores on 
machine

OR > Total RAM on machine Job remains Pending

<= number of 
cores on node

<= Total RAM on node Y Y
<= number of cores on 
node

<= Total RAM on node Y Y

<= number of 
cores on node 

> Total RAM on node Y Y (preferred)
<= number of cores on a 
node

> Total RAM on node Y Y (preferred)

> number of cores on 
node

<= Total RAM on machine Get entire machine

N/A > Total RAM on machine Job remains Pending

High Speed Bus

Node 0

Node 1High Speed Bus

Node 0

Node 1
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Hardware/Software Settings
Recap

• Hardware BIOS settings available to reduce variation

• Tests are run using NUMA aware schedulers
– No change was made in application code
– Scheduler handles binding appropriately

• Pre-requisites for End Users
– Resource requirement for tests be specified upfront

− Memory requirement
− Core requirement for Multi-Thread jobs

• Better Utilization of resources
– Running up to 4 jobs per node
– Faster throughput



© Synopsys 2012 16

AgendaAgenda

Problem Statement

Methodology
NUMA hardware settings
Cluster setup
Measuring performance numbers 

Creating Baselines
Regular Benchmark test runs
Re-establishing Baselines

Sample Results

Minimizing variability (other factors)



© Synopsys 2012 17

Methodology –Creating Baselines
Reset Baseline on NUMA machines

Define products acceptable 
maximum variance

Calculate statistical average/Centroid 
(n-1 data points)

Perform 3 (n) runs for all tests

Maximum variance 
<= Product 

acceptable range?

Perform 1 additional run

N

Y
CPUTIME for test = AVG (n runs for the test)

Product  test  variation threshold = x% + 
current threshold

X% = NUMA variability

Baseline established

Product acceptable maximum variance

Product acceptable  maximum variance
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Regular Benchmark Runs

Start Performance run

Calculate variation of each test case 
wrt baseline

Find mean variation of all tests 
combined together

Is mean 
variation 

acceptable to 
product ?

Done with the Performance run

Y

Y

N

1. Ruled out hardware noise
2. Variation is from software 

changes

Y

Handle variations in the same way 
as is done today

Is change 
expected ?

To Evaluate tests with variations > 
product threshold

N

Baseline = baseline + 
a%

Y

All tests have 
(a%) variation 
wrt baseline ?

Keep track of test 
variation for next run 

OR
Re-establish baseline

N

Rerun tests with variation > 
product threshold OR wait for next 

run

N

Test still an 
outlier ?
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Re-establishing Baselines

• From release to release

• Large number of test cases have variations above the 
products acceptable threshold OR products curve has 
shifted

• If all tests show similar amount of variation with respect 
to the baseline
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Questions to Answer
Single-Thread/Multi-Thread tests

• What is needed to achieve “statistical stability” on NUMA 
machines?

• How to minimize number of runs to characterize and 
confirm performance?
– Given a baseline, can single runs be useful  to confirm 

performance?

– Single runs need to be dominant mode for regular runs

• How many tests can be run per node?
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Baseline: Single -Thread tests
Without Binding - Variance is High, More sampling 
required

Without binding , maximum variance 
unacceptable unless taking 4+ sample 
runs using 3 cores

Small variation from 2 to 4 cores in                  
use

• With Core + memory  
binding

• No binding

Binding
Jobs per 
Node

Max Variance  (%)

Number of Samples

1 2 3 4 5

Y 4 3.8 2.4 1.1 0.7 0.5

N 3 11.5 5.8 3.9 2.5 1.4

4.0%

12.0%
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Baseline: Multi-Thread tests
Without Binding, variance is High 

• Core + Memory binding

• NO core or memory binding

Without binding , 
maximum variance 
unacceptable

20%

7%
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Minimizing Variability
Other Factors

• Run tests on local disk to eliminate/reduce network 
I/O

• Vendor specific BIOS parameters for reduced 
variability.
For example, for HP machines

• Linux “libnuma” library

BIOS Setting for Benchmark tests

HP Power Regulator Static High Performance

HP Power Profile Maximum Performance

CPU Idle Power State C6 state
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Conclusions

• Making applications NUMA aware during run time shows 
great advantage in achieving reasonable variability with 
single benchmark runs
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Contacts

• Vinnie Kasula            vinnie@synopsys.com
• Sangeeta Aggrwal     sangeet@synopsys.com
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Q&A
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Thank You


