
© Synopsys 2012 1

Tackling Runtime Variance on
NUMA Architecture

April 5 th, 2012

© Synopsys 2012 2

AgendaAgenda

Problem Statement
Background and Challenges

Different types of Multi-Processors

How Caching affects repeatability

Methodology

Sample Results

Minimizing variability (other factors)

© Synopsys 2012 3

Background and Challenges

• Synopsys Customers' pressure points
– Larger designs, shorter design time:

− EDA application TAT (Turn Around Time) / Performance

• Synopsys product teams’ pressure points
– Performance improvement (scalar, Parallel Processing)

− No runtime performance impact from new features and
bug fixes

• Greater need for reliable/consistent performance
benchmarking

© Synopsys 2012 4

Types of Multi-Processors

• Architectures based on how memory is
accessed
– SMP -> Symmetric Multi-Processing (Uniform Memory Access)

– NUMA -> Non-Uniform Memory Access

© Synopsys 2012 5

SMP Architecture
aka UMA

L2

Core + L1
Core + L1

Core + L1

Core + L1

L2
Memory

Memory
Core + L1
Core + L1

Core + L1

Core + L1
L2

L2

© Synopsys 2012 6

NUMA Architecture

Core + L1/2

Core + L1/2

Core + L1/2

Core + L1/2

Core + L1/2

Core + L1/2

Memory

L
3
+
C
t
r
l

Core + L1/2

Core + L1/2

Core + L1/2

Core + L1/2

Core + L1/2

Core + L1/2

Memory

L
3
+
C
t
r
l

High Speed interconnect

Node 0

Node 1

© Synopsys 2012 7

Problem Statement

• How to run Benchmark tests with accuracy and
repeatability on NUMA machines?
– Aiming for 1-3% variation without multiple runs for

statistical averaging

© Synopsys 2012 8

How Caching Affects Repeatability
Adds variance

• Cache hits and misses affects system performance

• Cache coloring/Page coloring helps reduce conflict
misses

• Linux does not support page coloring
– True for all Linux variants (RedHat, SUSE)

– Peak performance is higher, but variability also higher
– Less deterministic with regards to cache performance

© Synopsys 2012 9

AgendaAgenda

Problem Statement

Methodology
NUMA hardware settings
Load Share setup

Measuring performance numbers

Sample Results

Minimizing variability (other factors)

© Synopsys 2012 10

NUMA Hardware settings
OS Setup

• Hardware BIOS settings

BIOS Setting Enabled Description

Turbo Boost N Dynamically shutdown unused cores to divert
power to over-clock active cores

Hardware
PreFetch

Y Pre-fetch data and instructions from memory
to L2 cache.
Reduces memory read latency

Hyper-Threading N Provides 2 instruction threads per core

Hardware PreFetch Y Pre-fetch data and instructions from memory to L2 cache.
Reduces memory read latency

Turbo Boost N Dynamically shutdown unused cores to divert power to over-clock
active cores

© Synopsys 2012 11

NUMA Hardware settings
Binning

• Process of identifying similar performance
machines

• All NUMA machines binned
– Identical performance machines grouped together

– Users run Benchmark tests on selected group

© Synopsys 2012 12

AgendaAgenda

Problem Statement

Methodology
NUMA hardware settings
Load Share setup

Making Applications NUMA aware

Implementing NUMA configurability
Measuring performance numbers

Sample Results

Minimizing variability (other factors)

© Synopsys 2012 13

Making Applications NUMA aware
numactl command
• No Code change required

• Applications were made NUMA aware during runtime to ensure
consistency in results
– Use numactl command: Controls NUMA policy for binding processes and/or

shared memory to nodes

• LSF and UGE schedulers made NUMA aware
− In-house scheduler tool developed to achieve numactl functionality

Numactl option Description

-cpunodebind Only execute process on the cores of the
selected nodes

-cpunodebind Only execute process on the cores of the selected node

-membind
Only allocate memory from selected nodes.
Jobs will start swapping when enough memory is
not available on these nodes

-membind
Only allocate memory from selected nodes. Jobs will
start swapping when enough memory is not available on
these nodes

-preferred
Preferably allocate memory on node. If memory
cannot be allocated there, fall back to other
nodes

-preferred
Preferably allocate memory on node. If memory cannot
be allocated there, fall back to other nodes

High Speed Bus

Node 0

Node 1High Speed Bus

Node 0

Node 1High Speed Bus

Node 0

Node 1

© Synopsys 2012 14

Implementing NUMA Configurability
Cluster Settings to reduce variation and improve utilization

• Scheduler manages memory consumption and cores used on each node level
• SGE/LSF scheduler satisfies the following behavior

Job Type
Cores
Required

Memory Required
Scheduler Behavior

CPU-Bind Memory-Bind

1 <= Total RAM on node Y Y

1 > Total RAM on node Y Y (preferred)

1 = Total RAM on machine Y Y (preferred)

Single
Thread

1 <= Total RAM on node Y Y

1 > Total RAM on node Y Y (preferred)

1 = Total RAM on machine Y Y (preferred)

> Total cores
on machine

N/A Job remains Pending

Multi
Thread

Single
Thread

> Total cores on
machine

OR > Total RAM on machine Job remains Pending

<= number of
cores on node

<= Total RAM on node Y Y
<= number of cores on
node

<= Total RAM on node Y Y

<= number of
cores on node

> Total RAM on node Y Y (preferred)
<= number of cores on a
node

> Total RAM on node Y Y (preferred)

> number of cores on
node

<= Total RAM on machine Get entire machine

N/A > Total RAM on machine Job remains Pending

High Speed Bus

Node 0

Node 1High Speed Bus

Node 0

Node 1

© Synopsys 2012 15

Hardware/Software Settings
Recap

• Hardware BIOS settings available to reduce variation

• Tests are run using NUMA aware schedulers
– No change was made in application code
– Scheduler handles binding appropriately

• Pre-requisites for End Users
– Resource requirement for tests be specified upfront

− Memory requirement
− Core requirement for Multi-Thread jobs

• Better Utilization of resources
– Running up to 4 jobs per node
– Faster throughput

© Synopsys 2012 16

AgendaAgenda

Problem Statement

Methodology
NUMA hardware settings
Cluster setup
Measuring performance numbers

Creating Baselines
Regular Benchmark test runs
Re-establishing Baselines

Sample Results

Minimizing variability (other factors)

© Synopsys 2012 17

Methodology –Creating Baselines
Reset Baseline on NUMA machines

Define products acceptable
maximum variance

Calculate statistical average/Centroid
(n-1 data points)

Perform 3 (n) runs for all tests

Maximum variance
<= Product

acceptable range?

Perform 1 additional run

N

Y
CPUTIME for test = AVG (n runs for the test)

Product test variation threshold = x% +
current threshold

X% = NUMA variability

Baseline established

Product acceptable maximum variance

Product acceptable maximum variance

© Synopsys 2012 18

Regular Benchmark Runs

Start Performance run

Calculate variation of each test case
wrt baseline

Find mean variation of all tests
combined together

Is mean
variation

acceptable to
product ?

Done with the Performance run

Y

Y

N

1. Ruled out hardware noise
2. Variation is from software

changes

Y

Handle variations in the same way
as is done today

Is change
expected ?

To Evaluate tests with variations >
product threshold

N

Baseline = baseline +
a%

Y

All tests have
(a%) variation
wrt baseline ?

Keep track of test
variation for next run

OR
Re-establish baseline

N

Rerun tests with variation >
product threshold OR wait for next

run

N

Test still an
outlier ?

© Synopsys 2012 19

Re-establishing Baselines

• From release to release

• Large number of test cases have variations above the
products acceptable threshold OR products curve has
shifted

• If all tests show similar amount of variation with respect
to the baseline

© Synopsys 2012 20

AgendaAgenda

Problem Statement

Methodology

Sample Results

Single Thread tests

Multi-thread tests

Minimizing variability (other factors)

© Synopsys 2012 21

Questions to Answer
Single-Thread/Multi-Thread tests

• What is needed to achieve “statistical stability” on NUMA
machines?

• How to minimize number of runs to characterize and
confirm performance?
– Given a baseline, can single runs be useful to confirm

performance?

– Single runs need to be dominant mode for regular runs

• How many tests can be run per node?

© Synopsys 2012 22

Baseline: Single -Thread tests
Without Binding - Variance is High, More sampling
required

Without binding , maximum variance
unacceptable unless taking 4+ sample
runs using 3 cores

Small variation from 2 to 4 cores in
use

• With Core + memory
binding

• No binding

Binding
Jobs per
Node

Max Variance (%)

Number of Samples

1 2 3 4 5

Y 4 3.8 2.4 1.1 0.7 0.5

N 3 11.5 5.8 3.9 2.5 1.4

4.0%

12.0%

© Synopsys 2012 23

Baseline: Multi-Thread tests
Without Binding, variance is High

• Core + Memory binding

• NO core or memory binding

Without binding ,
maximum variance
unacceptable

20%

7%

© Synopsys 2012 24

AgendaAgenda

Problem Statement

Methodology

Sample Results

Minimizing variability (other factors)

© Synopsys 2012 25

Minimizing Variability
Other Factors

• Run tests on local disk to eliminate/reduce network
I/O

• Vendor specific BIOS parameters for reduced
variability.
For example, for HP machines

• Linux “libnuma” library

BIOS Setting for Benchmark tests

HP Power Regulator Static High Performance

HP Power Profile Maximum Performance

CPU Idle Power State C6 state

© Synopsys 2012 26

Conclusions

• Making applications NUMA aware during run time shows
great advantage in achieving reasonable variability with
single benchmark runs

© Synopsys 2012 27

Contacts

• Vinnie Kasula vinnie@synopsys.com
• Sangeeta Aggrwal sangeet@synopsys.com

© Synopsys 2012 28

Q&A

© Synopsys 2012 29

Thank You

