
Parallel EDA,

A user’s perspective

Tom Spyrou
AMD Fellow
April 2012, EDPS

| Presentation Title | Month ##, 2009 | Confidential2

User’s View of Parallel EDA

�Tool(s) that run for a long time

�Access to a farm of machines usually managed by lsf or
something similar

�Fair share concept allocating machines across users

– Exclusive access to machines is discouraged

– Access to large memory machines requires long waits

�Hoping to use fair share of the farm to get the job done faster

�Cloud EDA is not yet in the mindset

| Presentation Title | Month ##, 2009 | Confidential3

| Presentation Title | Month ##, 2009 | Confidential4

Given the User’s view these are the trade-offs

� Requiring multiple machines simultaneously does not
work well.

� For example in Timing Analysis, MMMC distributed,
where all timing views are needed at the same time is
not feasible.

� Machines need to be used effectively as they come up,
no waiting for all machines requested before starting

� If multiple machines are used and there is high memory
duplication this is not efficient

� Multi-threading with minimal memory increase per
thread is preferred but there is a usability issue

| Presentation Title | Month ##, 2009 | Confidential5

Usability of multi-threading and LSF/others

� Tool asks user to set number of threads

� User must make sure bsub call asks for that number of
threads.

� If there is a good machine with n-1 processors available
it won’t be chosen

� If resource managers and tool developers could
coordinate it would be helpful.

– Ask for machine with X memory and most available
cpus from LSF. Tell App how many it can use via envi
variable

| Presentation Title | Month ##, 2009 | Confidential6

Fair Share example

� A user cannot have more than 8 machines with running
jobs at the same time

� 8-way machines are the most available

� 64 cpus

� Easy to get machines with 64Gig RAM

� Hard but possible to get machines with 128Gig Ram

� Bigger requires special approval / process

| Presentation Title | Month ##, 2009 | Confidential7

Using parallel processing to reduce Machine Size

� Split job into pieces where each uses less memory

� MMMC Timing analysis

� Routing

� DRC

| Presentation Title | Month ##, 2009 | Confidential8

What about the Cloud

� Possible benefits

– Peak access to machines when needed

– Solve the application / resource manager
coordination

– Shared cache contention

– EDA Vendor easy access to data

� Quick debugging of actual issue, like internal CAD

� Questions

– Data security real and perceived

� Cost predictability

– Time based versus usage based model

| Presentation Title | Month ##, 2009 | Confidential9

Methodology for deciding if and how much
parallel programming to use

� When answering this question we need to look at :

– Technical issues

– ROI issues for the expert resources usually needed to write
parallel programs and make them scale

� List of questions that form a decision diagram starting at the
simplest solution moving to the most complex

� I may not have the decision points right for everyone but I
feel strongly about the general methodology of trying to start
simple and adding complexity when there is ROI.

| Presentation Title | Month ##, 2009 | Confidential10

Methodology for deciding if and how much
parallel programming to use

� Can non-shared memory, coarse grained with separate
processes give the needed scalability?

– Use only processes and keep it simple when possible

– Coarseness defined as compute time >> data transfer time

– My Blog Post discusses pushing this to the limit :

� http://software.intel.com/en-us/blogs/2009/09/02/parallelizing-

legacy-code-using-fine-grained-distributed-processing/

| Presentation Title | Month ##, 2009 | Confidential11

Methodology for deciding if and how much
parallel programming to use

� If shared memory is required does the task tend to share a lot
of memory for read and then generate a smaller amount of
data?

– Use copy on write fork() and keep it simple when possible

– Generate all data before fork(). Compute generates new
data versus updating existing data.

– My blog post discusses this in detail :

� http://software.intel.com/en-us/blogs/2009/09/25/parallelizing-

legacy-unixlinux-code-using-copy-on-write-fork/

| Presentation Title | Month ##, 2009 | Confidential12

Methodology for deciding if and how much
parallel programming to use

� If shared memory is required for both reading and writing at a
fine grained level then we need threads that share memory.

– Can you get the needed scalability with X86 threads
including using SSE?

– Stay with X86 threads, if SSE use openCL if not use the
pthread library since more people are trained on it.

| Presentation Title | Month ##, 2009 | Confidential13

Methodology for deciding if and how much
parallel programming to use

� Is the cost of the run in terms of number of cpu’s needed too
high, or is the bottleneck access to cpu’s instead of scalability
of the algorithm?

– Use openCL to access GPU hardware and see if the compute
power there can be utilized. Save on X86 hosts.

– If X86 based threads won’t scale, there is either a
bottleneck in the divisibility of the work or the data transfer.

� If this is the case it probably won’t scale on GPU’s either

| Presentation Title | Month ##, 2009 | Confidential14

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in
the United States and/or other jurisdictions. Other names used in this presentation are for identification
purposes only and may be trademarks of their respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

