Parallel EDA,

A user’s perspective

AMD

The future is fusion

User’s View of Parallel EDA

=Tool(s) that run for a long time

=Access to a farm of machines usually managed by Isf or
something similar

=Fair share concept allocating machines across users
Exclusive access to machines is discouraged

Access to large memory machines requires long waits

=Hoping to use fair share of the farm to get the job done faster

=Cloud EDA is not yet in the mindset

The future is fusion

Ider

| TileBui

PlGetdb Fun FlGetidb Fun

AreTimFunch AHETim FUncD

AHETimPrime AHETImPrmE
FtPunc Flatn Genert: Fun FtFunc Fladn

GengrateFin

FHFunce fan AneTimPrme SortFuncFla PHRunCOefan SortFuncFla AreTimPrime

AHETimPHmE SortFunc Fla SortFunchef AHETImPHMmE SortFunc fa AHeTimPHme SortFuncoet AHETImPHmE

3 | Presentation Title | Month ##, 2009 | Confidential AMDﬂ
The future is fusion

Given the User’s view these are the trade-offs

= Requiring multiple machines simultaneously does not
work well.

= For example in Timing Analysis, MMMC distributed,
where all timing views are needed at the same time is
not feasible.

= Machines need to be used effectively as they come up,
no waiting for all machines requested before starting

= If multiple machines are used and there is high memory
duplication this is not efficient

= Multi-threading with minimal memory increase per
thread is preferred but there is a usability issue

The future is fusion

Usability of multi-threading and LSF/others

= Tool asks user to set number of threads

= User must make sure bsub call asks for that number of
threads.

= If there is a good machine with n-1 processors available
it won't be chosen

= If resource managers and tool developers could
coordinate it would be helpful.

Ask for machine with X memory and most available
cpus from LSF. Tell App how many it can use via envi

variable

The future is fusion

Fair Share example

= A user cannot have more than 8 machines with running
jobs at the same time

= 8-way machines are the most available

= 64 cpus

= Easy to get machines with 64Gig RAM

= Hard but possible to get machines with 128Gig Ram

= Bigger requires special approval / process

The future is fusion

Using parallel processing to reduce Machine Size

Split job into pieces where each uses less memory

MMMC Timing analysis

Routing

= DRC

(i) AMD1

The future is fusion

What about the Cloud

= Possible benefits
Peak access to machines when needed

Solve the application / resource manager
coordination

Shared cache contention
EDA Vendor easy access to data
Quick debugging of actual issue, like internal CAD
= Questions
Data security real and perceived
= Cost predictability
Time based versus usage based model

The future is fusion

Methodology for deciding if and how much
parallel programming to use

= When answering this question we need to look at :

Technical issues

ROI issues for the expert resources usually needed to write
parallel programs and make them scale

= List of questions that form a decision diagram starting at the
simplest solution moving to the most complex

= T may not have the decision points right for everyone but I
feel strongly about the general methodology of trying to start
simple and adding complexity when there is ROI.

The future is fusion

Methodology for deciding if and how much
parallel programming to use

= Can non-shared memory, coarse grained with separate
processes give the needed scalability?

Use only processes and keep it simple when possible
Coarseness defined as compute time >> data transfer time

My Blog Post discusses pushing this to the limit :

http://software.intel.com/en-us/blogs/2009/09/02/parallelizing-
legacy-code-using-fine-grained-distributed-processing/

fusion) AMD

The future is fusion

Methodology for deciding if and how much
parallel programming to use

= If shared memory is required does the task tend to share a lot
of memory for read and then generate a smaller amount of

data?
Use copy on write fork() and keep it simple when possible

Generate all data before fork(). Compute generates new
data versus updating existing data.

My blog post discusses this in detail :

http://software.intel.com/en-us/blogs/2009/09/25/parallelizing-
legacy-unixlinux-code-using-copy-on-write-fork/

AMD{

The future is fusion

Hfusion)

Methodology for deciding if and how much
parallel programming to use

= If shared memory is required for both reading and writing at a
fine grained level then we need threads that share memory.

Can you get the needed scalability with X86 threads
including using SSE?

Stay with X86 threads, if SSE use openCL if not use the
pthread library since more people are trained on it.

The future is fusion

Methodology for deciding if and how much
parallel programming to use

= Is the cost of the run in terms of number of cpu’s needed too
high, or is the bottleneck access to cpu’s instead of scalability
of the algorithm?

Use openCL to access GPU hardware and see if the compute
power there can be utilized. Save on X86 hosts.

If X86 based threads won't scale, there is either a
bottleneck in the divisibility of the work or the data transfer.

If this is the case it probably won't scale on GPU’s either

The future is fusion

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in
the United States and/or other jurisdictions. Other names used in this presentation are for identification
purposes only and may be trademarks of their respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

The future is fusion

