

Paradigm Shift to 3D and its Impact on our EcoSystem, Standards and EDA Tools

Herb Reiter, eda2asic Consulting Chair of GSA 3D TSV Programs EDPS, Monterrey, April 2011

- "2D ICs" slow innovation for small & medium volumes
 - Need EcoSystem changes to enable many of us to continue innovating
- 3D demands closer cooperation AND new standards
 - Data exchange formats & tools interoperability foster cooperation
 - Higher packing density demands more rules (condo vs 50 ac ranch)
- 3D technology offers new opportunities for EDA
 - 3D is a SYSTEM integration technology, not limited to IC design
 - Wide range of EDA opportunities from making proven 2D tools "3D aware" and multi-level modeling tasks to solving complex system-level hardware and software challenges with new concepts
- Discussion, conclusions, action items

Major Implementation Alternatives

653

Characteristics of our EcoSystem today

- ICs, packages and PCB are designed (almost) in isolation
- Monolithic "2D ICs" hit economical and technical limits
- Modular PoP, PiP, SiP,... are in production today
- 2½D and 3D variations are emerging as new alternatives for IC-level and system-level integration

What do most of our customers want from us

- Smarter, faster and lower cost systems with longer battery life
- Following the latest trends right away

How can we meet these requirements

- Architect for 3D implementations (wide I/O, analog, MEMS, passives)
- Higher levels of integration reduce power and increase speed
- Lots of software improves "smarts" and user friendliness
- IP reuse and modularity reduce development time and –cost
- Standards simplify cooperation and drive economies of scale
- Investment in design- and manufacturing infrastructure

GET Challenges with the proven 2D SoCs

2.0

GGA Cooperation Within the "Food-Chain"

Fabless/light vendor: Idea, architecture, targets for COST, Power, Performance, FormFactor, ...

EDA can play an essential role in building the 3D EcoSystem!

The Case for Standards in 3D Design

3D/TSV Modeling & Design Steps

New EDA Opportunities in 3D EcoSystem

H/W Dev. Tools for:

S/W Dev. Tools:

- Modeling tools/flows to create "3D PDKs" incl. 2D PDK data
 - Capture electrical-, thermal-, magnetic-, mechanical characteristics,...
- Modify proven 2D tools to make them "3D aware"
 - PI, SI, noise, temp analysis, TSV strain, P & R ?,...
- Create tools for 3D specific new challenges
 - B 3D DFT, die+stack+I/P+passives+pkg co-design, warpage, magnetics,...
- Create system-level H/W planning and partitioning tools
 - Pathfinding for lowest cost, lowest power, smallest formfactor,...
- Create system-level hardware and software co-design tools
 - System partitioning in H/W and S/W, emulation, debugging, updating,...
- Create tools for OS, applications S/W & drivers dev. & debug
 - Multi- and many-core, handling of very wide busses, error recovery,...

657

- System tools have to be application specific and utilize a highlevel of abstraction to offer high productivity
- Developing application-specific tools requires very good cooperation with the actual users at the EDA customers
- The number of system designers is much smaller than the number of circuit designers

Valid concerns, but keep in mind:

- As system complexity and value increase, the need for system-level tools increases beyond RTL, C++, TLM → large opportunity for EDA !
- Higher abstraction level tools will increase number of system designers
- Today's EDA tools sell per seat for the contract period. Their price is not tied to the value they create → New business model for system tools?
- System designers who implement large "2D SoCs" will benefits from 3D system tools as well → increases user base and revenues !
- Systems' software content is increasing and extends systems' useful life significantly → Tools for H/W & S/W co-design and S/W development !

2¹/₂ + 3D Commercialization Schedules

Company TSMC	2½D with Interposers		3D with TSV	
	2H 2011	[2]	2012-2013	[3]
UMC			2H 2011	[4]
GlobalFoundries			2013	[5]
IBM	2011	[6]		
Samsung			2012	[7]
Elpida			2H 2011	[4]
Micron			2012	[8]
Nanya			2011-2012	[9]
ASE	2012-2013	[10]		
STATSChipPAC		1.55555	2013	[11]
Amkor	2H 2011	[3]		
SPIL	2011	[12]	2012	[12]
Qualcomm		0.0000	2013	[12]
Nokia			2012-2013	[12]
Xilinx	2H 2011	[2]		
Dell		1999	2012	[13]

= this year Dr. Phil Garrou, YOLE <u>http://www.i-micronews.com/lectureArticle.asp?id=6351</u>

- Is 3D TSV and 2½D technology here to stay?
- Which applications will use 3D/TSVs first ?
- Should **EDA** jump into the **3D drivers** seat ?
- If not now, when ?
- Can a different **business model** increase EDA support for 3D?
- Can we agree on jointly defined EDA standards or do we want to waiting for de-facto (proprietary) standards ?
- What else if not 3D can grow the EDA industry ?
- **NEXT** technologies: 3D monolithic ICs and Carbon Nanotubes

Thank You !

