Electronic Design Process Symposium (EDPS) 2011

Se Sa

Intel Information Technology

Taxonomy Oriented Resource Allocation

P A Soujanya, Intel IT Biswadeep Chatterjee, Intel IT

Agenda

- Introduction
- Problem Statement
- Proposed Solution
- High Level Architecture
- Summary

"All observations/comments expressed in this presentation represent the views of the speaker only in personal capacity and does not represent Intel in any manner whatsoever"

2

Intel Information Technology IT.intel.com

Interactive Computing - Workflow

Compute Server Dealer (CSD) SELECT POOL **Request Session** CSD Configuration Data **Validate Request** (Access, Current Sessions, etc) **Design Engineer Selection Algorithm** Session Returned **Select Best Server** Pool Allocate <

Online design engineer time $= \sim$ Time spent in a interactive session

Intel Information Technology

Challenges with Current Flow

•'Start' and 'End' points of an interactive session not clearly defined – user owns the allocated session and there is no control on number of jobs that can be invoked.

• "Utilization and Productivity" both are decided based on type and number of jobs run by user(s) on server.

•Users tend to request for resources without clear understanding of their computing tasks requirements

•Users maintain the same session allocated to them by CSD (resource brokering tool) even when their resource needs have changed drastically

•Overall server performance

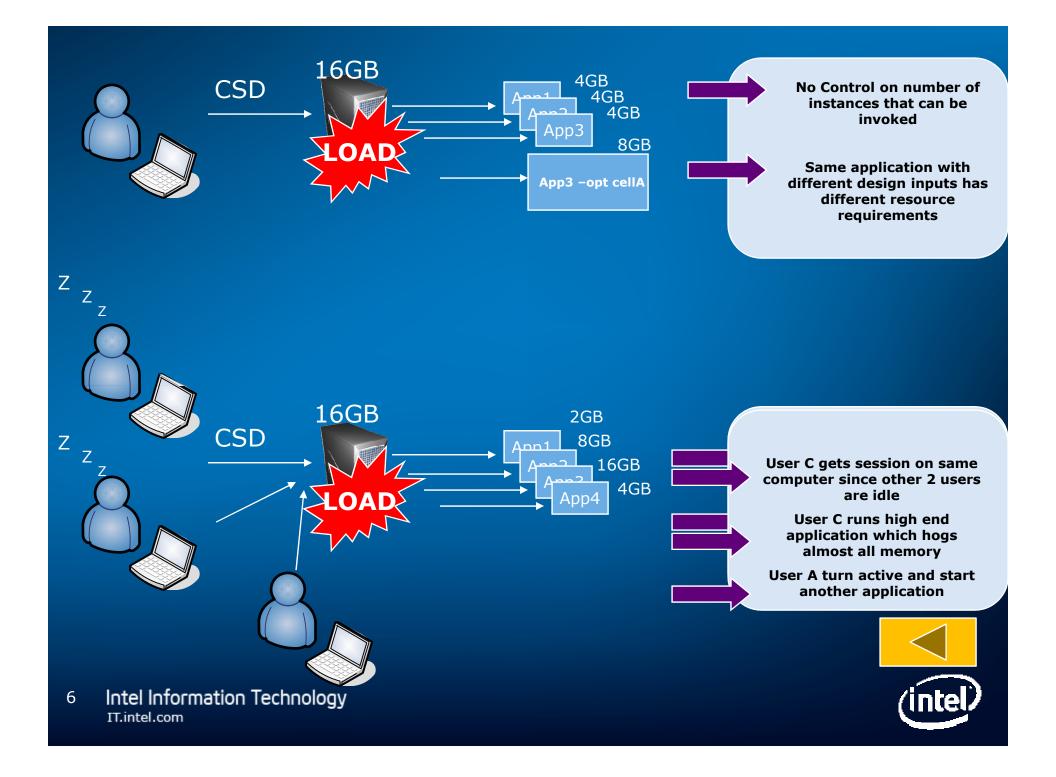
- High load can cause system crash/hang/reboot..
- Interactive pool balance

•Some machines in pool are "too high" where as others are "too low"

Interactive server utilization

•Resource allocation is not right sized to workloads. Low end jobs can hog high end servers thus preventing critical high end jobs from running on them when needed

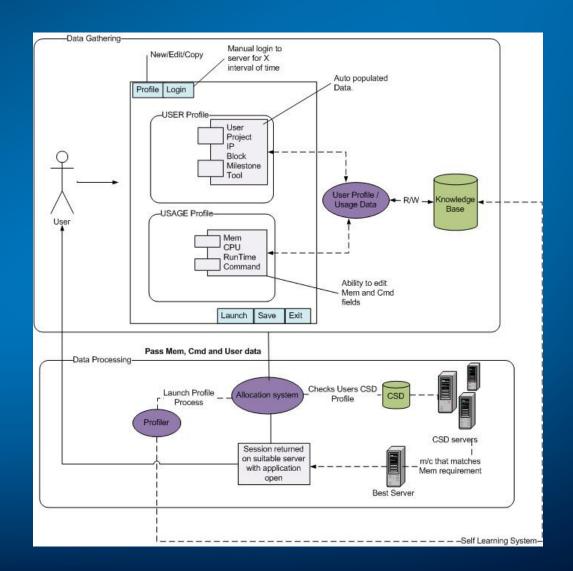
Design engineer productivity


•High load, resource imbalance, incorrect allocation

•Users sticking to same session will prevent another user in need for an interactive session wait for resources

Intel Information Technology IT.intel.com

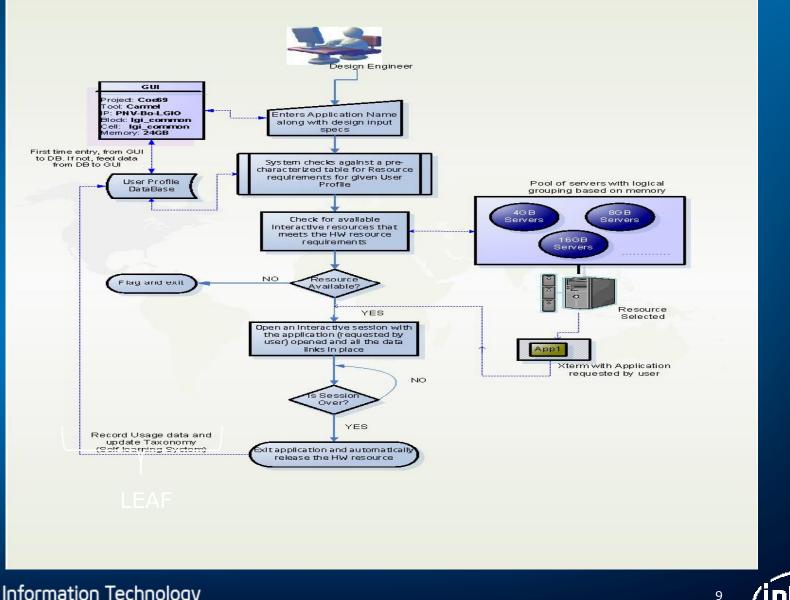
	V	Vha	at d	rives	s De	sign co	mpute	need	ds?	
Ű	Tool/Flow 🍸	IP	IP Lead	Blocks	Cell Names	Owner	Memory Usage (MB Real)↓	Total Run Time	Total CPU time	Job id
	Carmel	DAC- CRT	Thakare, Shivraj; Sahoo, Ranjan, Rao, Venkatesh	crt-dac	dactop	Juturu, Kamal KiranX	59,964	5D:19H:56M:8S	4D:20H:13M:17S	Job6620
	Carmel	SDV_USB	Validation - Gaurav	coe66usb	coe66usbpllckb	Tool/Flow In	41,243	3D:17H:24M:44S	2D:7H:28M:16S	Job 6684
	Carmel	PNV-B0- DMI	Validation - Gaurav	coe66dmi4Xport	coe66dmi4Xpor	t Purawat, Sh iwe ta	32,316	4D:2H:24M:5S	3D:15H:31M:48S	Job 5887
	Carmel	DDR	Thakare, Shivraj; Sahoo, Ranjan, Rao, Venkatesh	HDMI Family Desig Proje		EDA TOOL RESOURC	-	6D:22H:6M:17S	6D:1H:12M:44S	Job 7429
	Carmel	SDV_USB	Validation - Gaurav	coe66usb	coe66usb2ic tS		27,301	2D:19H:28M:1S	1D:21H:18M:2S	Job 6657
	Carmel	PNV-B0- LGIO	Validation - Gaurav	lgi_common	lgi_common	UTILIZATIO	20,975	2D:14H:3M:31S	0D:18H:29M:39S.	Job 5674
	Carmel	DDR	Thakare, Shivraj; Sahoo, Ranjan, Rao, Venkatesh	Clock EBB	clkebb_chb	Process Inp	20,480 uts	16:27:39	16:05:14	Job6615
	Carmel	DDR	Thakare, Shivraj; Sahoo, Ranjan, Rao, Venkatesh	DLL-FIFO	dqdlififo	Juturu, Kamal KiranX	19,443	0D:18H:15M:13S	0D:11H:7M:17S	Job 6635
	Carmel	DDR	Thakare.	Clock EBB	clkebb cha	Juturu, Kamal	18.000	24:00:00	16:00	Job6524


Majority of Interactive applications resource consumption varies based on design inputs and design flows (combination of EDA tools, methodology and process collaterals).

For example in above data, same tool can consume memory between 18GB to 60GB based on Block and Cell Name and type of analysis

Intel Information Technology

System Diagram for TORA



Intel Information Technology IT.intel.com

8

Control Flow for TORA

Intel Information Technology IT.intel.com

Assumptions with Proposed Architecture

- User profile in a given project remains static in major project life cycle
- Interactive applications are single threaded in majority but memory needs and runtime are dynamic
- User knows the design inputs (block, cell and tool name he/she will be working on) and approximate resource needs for the first time entry.
- User will have to use a resource brokering system to get a resource allocated (user will not know machine details otherwise)

10

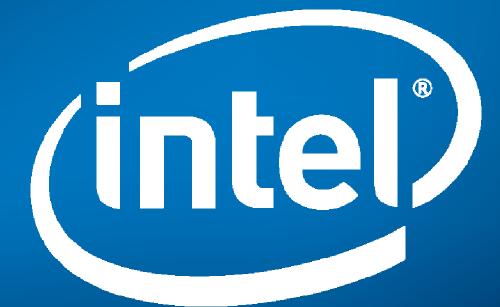
Benefits

- Maximize sharing of interactive resources by right-sizing interactive sessions
- Minimize disparity between application needs and allocated session
- Optimize purchase decisions by providing access to granular level of usage data
- Minimize system crashes due to load
- Improve design engineer productivity by striking right balance between utilization and performance

Does Proposed solution address all challenges???

- Definite start and end points of session \bullet
 - No xterm returned but the actual application

- Control on User sessions
 - Through slot/session restrictions
- User using high end m/c to run low end jobs
 - Any scheduler running in the backend takes care of this automatically
- User running high end job on low end machine \bullet
 - Any scheduler running in the backend takes care of this automatically
- Clear Idle session \bullet
 - Through idle session detection policies



Long term roadmap...

• Return a VM session with user application

- Enables user isolation and prevents problems with a single user's session from affecting other sessions
- Allows user to invoke a CAD tool that needs a non standard OS (say, RH)
- Allows addition of specific resources (like memory) to an existing VM when required by the application
- Enable session migration to create "high available" environment
 - Conclusively proven session migration capability of VMs same technology can be used here too

