Challenges in the pattern information-transfer channel

Mike Rieger Hillsboro, OR

Outline

- The challenges:
 - Smaller features.
 - Higher feature density.
 - At decreasing cost / function.
- Survey new lithography & process technologies to address those challenges.
- Focus on information density (not just linewidth)
- Outline layout constraints required to enable lithography innovations.

Information density in a microlithographic image

The pattern communication channel

Information capacity of the lithography channel is growing more slowly than Moore's Law

Tomoyuki Matsuyama, et al, Nikon, 2006

SALIGHZAZ

Predictable Success

Information theory perspective

$C \alpha BW * Log(S/N)$

from C.E. Shannon, A Mathematical Theory of Communications, 1948

Information contained in a sample design layout (logic, 40nm node)

• Transistor density = 3.2 M transistors/ mm²

7

Assumption: 32 + 32 bits per polygon vertex. RTL (9-bits/transistor) is hierarchic

Information density in the channel

Improving Channel effectiveness

Four options:

1. Increase spatial bandwidth

• Optics & illumination $BW \leq \frac{2 NA}{\lambda}$

2.Increase Signal to Noise ratio in channel.

C α BW * Log(S/N)

3.Add more "parallel" channels.

4. "Compress" information:

 Use lithography and process innovations to supply missing information, thus lower process entropy.

Information through channel

Increase bandwidth: wavelength & optics $C \ \alpha \ \underline{BW} * Log(S/N)$

Increase bandwidth: Multiple exposure strategies

 $C \alpha \underline{N^*}BW * Log(S/N)$

Double exposure lithography

Amyn Poonawala, Computer Engineering Department, U. of California, Santa Cruz **Yan Borodovsky**, Portland Technology Department, Intel Corp. **Peyman Milanfar**, Electrical Engineering Department, U. of California, Santa Cruz

Costs of multiple exposure methods: •Reduced litho throughput.

- Increased mask cost
- •Layout "colorability" restrictions.

Pitch splitting

Layouts courtesy of IMEC; coloring by Synopsys

Double Patterning – LELE pitch splitting

Lower systematic noise with OPC $C \ \alpha \ BW * Log(\underline{S/N})$

OPC removes predictable, localized feature distortions

SYNOPSYS® Predictable Success

Lower random noise with source optimization $C \ \alpha \ BW * Log(\underline{S/N})$

Effects of off-axis illumination

© Synopsys 2010

SYNOPSYS[®] Predictable Success

Optimizing sources for design layout pattern

GATE

CONTACT James Blatchford, TI, SPIE 2011

© Synopsys 2010

Cost of source optimization Layout is restricted to pitches defined by the source

Custom source

Physical noise sources are unaffected.

- A custom source makes layout patterns with certain spatial frequencies more immune to noise;
- But other layout configurations will be more susceptible.

Design layouts must conform to spatial frequency constraints.

Mask optimization with subresolution assist features

Assist features (SRAFs) generate spatial frequency components in the mask layout consistent with specific source configurations

Mutual information between design and process

Constant-width features defined by SAPD process

Sidewall-aligned pitch doubling (SAPD)

SAPD for 2D layouts design first exposure

trim exposure

Yongchan Ban, U. Texas, et al, SPIE 2011

final pattern

add sidewall features

Complementary Patterning

Grating pattern is **mutually known** to process and design.

Relevant information is the set of cut locations & sizes.

- •Relatively sparse (low duty cycle)
- •relaxed tolerance for placement uncertainty:

Directed self assembly (DSA) materials

Materials (hypothetical) solution to LER from shot noise

Productivity trends

	Cost reduction/yr.	Productivity increase/yr.
IC part cost per transistor, 30yr average ¹	-39%	
IC part cost per transistor, lately ²	-10%	11%
Mask cost per transistor ³	-11%	12%
Design cost per transistor ⁴	-09%	10%
Design cost per transistor less embedded SW development cost ⁴	-14%	16%
US long-term, annual productivity improvement ⁵		3%
 ¹R. Kurtzweil, 2008 ²IBS Vol 18 # 5, 2009 ³IC Insights ⁴IBS Vol 18 #7, 2009 ⁵Crestmont Research, 2010 		

Lithography tool cost

Predictable Success

Observations

- EUV promises nearly an 7X increase in information density compared to 193i (1240 vs. 178 Mbytes/mm²) -- nearly a 3-generation shrink .
 Very good for 2-D configurations, such as contacts, trim/cut patterns.
- On a single layer, double patterning (pitch splitting and pitch doubling) doubles density, thus there is no net productivity gain (cost /feature same as single exposure).
 - At least DP does not increase cost per device.
- Double-patterning provides a 2-generation shrink (50%) for 1dimensional layouts; interactions between DP'd layers can provide device density increase up to 4X.

Conclusions

- When design information exceeds available channel capacity, the litho process must lower entropy by limiting choices.
 - The missing information is provided by having more order (spatial structure) in the process, which must be accommodated in design layout constraints.
- Materials & process will be playing an increasing role in "more Moore."
 - Enable resolution and density.
 - Reduce cost.
- Restricted pitches (spatial frequencies) are becoming a dominant layout constraint.
 - highly regular, repeating patterns are best.
- Regular 1-D layouts provide compelling manufacturing benefits:
 - Low entropy maximizes optical image fidelity.
 - Defines realistic targets for self-assembling process technologies.
 - Maximizes the effectiveness of double patterning.

Acknowledgements

• John Stirniman, Lars Bomholt, Kevin Lucas, Thomas Schmoeller, Bob Lefferts.

Appendix and backup

© Synopsys 2010

Review: Nyquist sampling theorem

A signal containing no frequencies higher than B can be exactly reconstructed from a series of samples spaced by ½ the period of B.

Harry Nyquist, Certain Topics in Telegraph Transmission Theory, 1928

Review: Hartley's Law

Hartley's Law extends Nyquist to express the information capacity of a channel in terms of bits/second, R.

 $R <= 2B \log_2(M_H)$

Where M_H is the number of distinguishable levels per sample.

Ralph Hartley, Transmission of Information, 1928

Calculating information density of litho optics

SYNOPSYS

Predictable Success

Estimating M_H

- Determining M_H
 - Meeting +/-10% CD spec at minimum ½ pitch @ contrast = 0.5 is (roughly) equivalent to an amplitude uncertainty of 1:25

sinusoidal image signal at minimum pitch

~ amplitude uncertainty ~4% of peak

+/-5% each edge

Optical information density calculations

Optical density equation:

$$C = \left[\frac{NA}{k_1\lambda}\right]^2 \log_2(M_H) bits/m^2$$

ArF 193 immersion scanner:

$$\left[\frac{1.35}{0.4 \cdot 193nm}\right]^2 \log_2(25) \frac{bits}{m^2} = 178 \, MBytes/mm^2$$

EUV 1st generation scanner:

$$\left[\frac{0.25}{0.4 \cdot 13.5nm}\right]^2 \log_2(25) \frac{bits}{m^2} = 1240 \ MBytes / mm^2$$

