
On Advancing the State of Parallel CAD Algorithms

William Swartz
TimberWolf Systems, Inc.

Dallas,TX
bill_swartz@twolf.com

ABSTRACT
In this paper, we will address the the current and future of
parallel algorithms and their application to CAD problems.
Instance, data, and task parallelism have been applied to
CAD problems with varying degrees of success. We will show
how each has been applied to physical design problems and
how each has fared. We will investigate the characteristics
of algorithms which are most amenable to parallelism. We
will also introduce the Haskell functional language and how
it has been augmented to exploit data parallelism. Finally,
we will present the challenges which remain for widespread
application of parallel CAD algorithms.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Applications

Keywords
Parallel programming

1. INTRODUCTION
With the advent of million gate integrated circuits de-

signs, time to market has becomes a major challenge. CAD
programs, algorithms, and systems struggle to handle such
large problems and their increasingly difficult constraints.
The widespread adoption of 64 bit computer architectures
has mitigated problems related to address space limitations.
In addition, the prevalence of low cost redundant array of
inexpensive disks (RAID) has all but eliminated issues re-
lated to the storage of large designs. Unfortunately, clock
frequencies have not continued to scale as microprocessors
have shrunk in size due to power density constraints. The re-
sult is that the execution time of a single microprocessor has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDPS ’11 Monterey, CA USA
Copyright 2011 ACM ...$10.00.

saturated. In order to leverage the large silicon areas avail-
able in state of the art technologies, designers have instead
turned to multiple processors on a single die. However, effi-
cient and reliable parallel software programming techniques
are in their infancy. The burden of exploiting parallel multi-
core microprocessors and systems has been left to the CAD
programmer. In this paper, we will explore some of the cur-
rent techniques available to CAD programmer.

Parallel computations may occur at the bit, instruction,
data, task, and instance levels. Bit and instruction level par-
allelism have been exploited by the hardware manufacturer
and are transparent to the CAD programmer. Techniques
such as large bus widths and out-of-order instruction pro-
cessing have been utilized by the monolithic microprocessor
designers in order to exploit the parallelism that exists at
the instruction level. These techniques are limited by the
inherent parallelism found in the implementation or coding
of a particular algorithm. The data dependencies of the
particular coding determines an upper bound on the paral-
lelism that can be exploited on a uniprocessor, and is typi-
cally quite modest (5 to 7 parallel instructions for the set of
SPEC benchmark programs) [17].

In contrast, data, task, and instance parallelism allow pro-
grams to exploit large amounts of concurrency. In data par-
allelism, each processor performs the same tasks on different
sets of data. There are several ways to implement data par-
allelism. Historically, a vector processor such as the Cray1
executes a single instruction stream or thread in lockstep on
multiple data sets. This is known as the single instruction
multiple data (SIMD) model according to Flynn [10]. More
recently, the single process multiple data (SPMD) model
was proposed by Pfister [8]. In the SPMD model, multi-
ple processors using multiple independent threads work on
distributed data sets using general purpose microprocessor
cores. This may be implemented using message passing or
barrier locks.

Task parallelism or control parallelism executes multiple
instruction streams on the same or different data sets. In
Flynn’s taxonomy [10], this is known as the multiple in-
struction multiple data (MIMD) model. The data may be
accessible in a single shared memory space or it may be dis-
tributed among the processing units. Each of the instruction
threads is autonomous but synchronization is often required
in order to scatter and gather data.

Instance parallelism is a special case of data parallelism
(SPMD) where the data of the computation have no de-
pendencies, that is, each instruction stream is completely
independent and may proceed to completion without syn-

chronization.
In this paper, we will investigate data, task, and instance

parallel and how we can apply them to our CAD programs
to reduce the execution time.

2. PARALLEL CAD ALGORITHMS
The remaining of this paper is organized as follows: First

we will discuss the necessary features of a parallel algorithm
as required by a CAD system. We then will present instance
parallelism, the most successfully applied parallel CAD al-
gorithm. Next, we will present data parallelism and show
how the functional language Haskell has been augmented
to automatically generate and schedule nested data paral-
lelism. Finally, we will look task parallel and the challenges
that remain for this general technique.

2.1 Requirements for CAD algorithms
As CAD tools are large and complex systems, they need

to obey the tenets of systems engineering in order to be suc-
cessful in the marketplace, that is, they need to be control-
lable, observable, and deterministic. A controllable system
allows external inputs to move the internal state of the sys-
tem from any initial state to any other final state in a finite
time interval. An observable system allows the current state
to be determined in finite time using only the outputs for
any sequence of state and control inputs. In addition, the
system must be deterministic, that is, the current state must
be uniquely determined by current and prior states of the
system.

These characteristics allow CAD vendors to properly de-
sign and test their algorithms. A CAD system must be
able to regenerate a problem (debug) or recreate a result for
archival purposes. Without determinism, this is impossible.
In addition, non-deterministic behavior precludes the intro-
duction of incremental design for the initial place and route
must be reproducible. Hence, deterministic algorithms are
a must for acceptance by the design community.

2.2 Instance Parallelism
The most successfully applied parallel CAD paradigm is

instance or trivial parallelism. As the name suggests, each
program execution is a different independent data instance
applied to the same set of instructions. In the sequential
case, the algorithm would be of the form shown in Algorithm
1.

Algorithm 1 Sequential execution

for i = 1 to number of instances do
threadi ()

end for

whereas the trivially parallel form is given in Algorithm 2.
In order for the data parallelism to be trivially parallel,

all variables among the threads must be independent, that
is, synchronization is unnecessary or

∀vk, vl vk ∩ vl = 0

where vk ∈ threadi and vl ∈ threadj The scheduling here is
simple because

∀i, j tthreadi ≈ tthreadj
where tthreadi is the execution time for thread i. Although
instance parallelism shortens the total overall execution time,

Algorithm 2 Parallel execution

p iterations ←

bnumber of instances

P
c

start ← 1
for i = 1 to p iterations do
end ← start + P - 1
eval in parallel(threadstart, threadend)
start ← end + 1

end for
remainder ← number of instances mod P
if remainder > 0 then

eval in parallel(threadstart, threadnumber of instances)
end if

where P is the maximum number of simultaneous threads
available on the computer system.

it generally doesn’t scale with input size as it doesn’t speed
up the individual execution threads.

Let’s look at a couple of examples of instance parallelism
as it has been applied to CAD algorithms. Our first exam-
ple is the Open Source SPICE simulator ngspice. In this
simulator, a significant amount of execution time is spent
evaluating the BSIM transistor models which are quite de-
tailed and complex. The sequential version evaluates each
instance in the inner for loop:

/* loop through all the BSIM4 device models */

for (; model != NULL; model = model->BSIM4nextModel) {

for (here = model->BSIM4instances; here != NULL;

here = here->BSIM4nextInstance){

.

. /* evaluate complex model here */

.

}

}

The parallel version using the Open Multi-Processing (OpenMP)
application programming interface (API) as implemented by
Holger Vogt is shown below [14]:

InstArray = model->BSIM4InstanceArray;

#pragma omp parallel for num_threads(nthreads) private(here)

for (idx = 0; idx < model->BSIM4InstCount; idx++) {

here = InstArray[idx];

good = BSIM4LoadOMP(here, ckt);

}

/* Load results back in to matrix */

BSIM4LoadRhsMat(inModel, ckt);

return good;

The #pragma omp directive instructs OpenMP to di-
vide the instances of the model found in the array InstArray
among the available threads and to dynamically schedule
them. The implementation details are left completely to the
OpenMP API reducing the burden on the programmer.

Originally, the evaluation of the transistor models took
62% of the execution time. From Amdahl’s law [2],

1

rs +
rp
n

Figure 1: Ideal standard cell layout for decomposi-
tion.

we can expect this enhancement to give us a maximum
speedup of 2.63 as the number of processes goes to infin-
ity and in practice it was found to yield a speedup of 2.01
when four threads were available.

Another successfully applied algorithmic technique is to
use geometric partitioning to induce instance parallelism.
For example, a global router may partition a row-based de-
sign such that all subsequent detail routing is completely
independent. This is possible under ideal conditions, that
is, the standard cell design methodology follows the design
template found in Figure 1. The most important features
for decomposition are that the pin’s ports must align in the
center of the row and that at most one pin resides per col-
umn. This allows the global router to create virtual re-
gions between adjacent rows of the center pins. Each of
these regions are independent as the global router has de-
termined the routes between the virtual regions effectively
partitioning the routes among the different virtual regions.
The partitioning allows each virtual region to be treated in-
dependently and become trivially parallel. In Figure 2 we
can see four independent regions being routed simultane-
ously while the center display shows the entire design in the
global router.

2.3 Data Parallelism
Data parallelism exploits the need for programs to per-

form bulk data options. Traditionally, data parallelism was
applied only to flat data or data that can be referenced from
a single array. These arrays could be interpreted as vec-
tors and computer architectures were tailored to facilitate
efficient operations on these vectors [15]. However, all se-

Figure 2: Parallel routing after partitioning is simple
case of instance parallelism

quential operations on the bulk data need to be of a similar
execution time in order to minimize dead time.

In the early 1990s, Blelloch and others developed the idea
of nested data parallelism and the NESL programming lan-
guage [5]. Nested data parallelism generalizes the bulk data
to recursive and unbalanced data structures. Nested data
parallelism greatly expands the applicability of data par-
allelism for it operates on all levels of hierarchy within an
algorithm. Such flexibility allows a much more diverse set of
applications such as sparse arrays, multilevel adaptive grids,
divide and conquer algorrithms, graph algorithms (including
shortest paths and spanning trees), and graphics.

Recently, the Haskell functional programming has been
augmented to support nested data parallelism. Unlike con-
ventional imperative languages such as C and C++, the
Haskell language is a pure functional language without side
effects. Without side effects, Haskell greatly improves ob-
servability and controllability of programs. In addition, the
compiler can safely make assumptions not possible with im-
perative languages and this greatly expands the number of
safe optimizations possible. The key idea behind Blelloch’s
work is a transformation from nested data parallelism to
flat data parallelism which is possible for functional lan-
guages. Once transformed into flat data parallelism, effi-
cient dynamic scheduling can be performed. The procedure
is completely deterministic. The Haskell compilation process
consists of four steps [11]: 1) Desugaring which removes syn-
tactic sugar, reducing the program to a simple lambda lan-
guage. This intermediate language, GHC’s “Core” language,
is still strongly typed. 2) Vectorization which transforms
nested data parallelism into flat data parallelism within the

Core language. 3) Fusion of structures which optimizes the
program by eliminating redundant synchronization points
and intermediate arrays, thus dramatically improves local-
ity of reference; and 4) Gang parallelism which divides the
parallel operations spatially into chunks, each chunk being
executed by a thread from a gang of threads. Typically a
gang contains a thread for each CPU. Gang parallelism is
expressed by giving library implementations of the “vector
instructions”, rather than by built-in compiler support. The
results reported on shared memory architectures by these
researchers are encouraging as their work scaled well up to
8 cores [12]. We are currently implementing a placement
algorithm using this methodology.

2.4 Task Parallelism
The most general form of parallelism is task parallelism

where programs are divided into tasks and distributed among
the processors. The challenge is to distribute the tasks such
that synchronization time doesn’t dominate the runtime.
Historically, the design of task parallelism algorithms was
a manual and intensive task, effectively limiting the number
of parallel CAD applications available.

For example, parallel algorithms for simulated annealing
which produce high quality results have been long sought
due to its long run times. Simulated annealing (SA) is a
general stochastic iterative improvement heuristic which op-
timizes cost functions in a large search space [13]. The sim-
ulated annealing algorithm randomly searches nearby states
in the solution space by using the Boltzmann probability
function to allow uphill moves. A global parameter T called
the temperature controls the size of the uphill move. The
temperature T is varied from a high value to zero as the
algorithm progresses. This allows the algorithm to avoid
being stuck at local algorithms. In fact, given enough time
the algorithm will converge to the global optimum. Unfor-
tunately, the temperature must be lowered slowly to achieve
such a high quality result, that is, the algorithm must visit
many nearby solutions.

It is clear that a parallel simulated annealing algorithm
would be of great use in CAD. For example, a simulated
annealing placer is a great candidate for parallel execution.
Unfortunately, several issues make parallel implementations
problematic. Typically, the cost function of a placer will
involve wire length and overlap terms. The wire length
costs require large amounts of communication as any cell
could have an external connection outside its partition. At
high temperatures, cells move long distances across the in-
tegrated circuit area and this results in many synchronizing
steps. The locks and barriers to provide proper synchro-
nization greatly increase the overall run time of the program
and thereby limit the effectiveness of the parallel algorithm.
However, at low temperatures cells are more likely to re-
main local to the partition and therefore communication
can be minimized. Low temperature simulated annealing
has an efficient parallel implementation scaled and so the
high temperature regime becomes the time bottleneck. At
this time, no scalable and efficient simulated annealing al-
gorithm based on task parallelism has been presented.

in Figure 3, we see a simulated annealing placer at high
temperature. One can observe that the rows are unequal
due to assumptions made by each processor. In the imple-
mentation, each processor makes the assumption that the
row length will be independent of the moves made by other

Figure 3: Simulated annealing parallel placement
using geometrical partitioning. Shown at high tem-
perature, lack of synchronization causes row length
unevenness.

processors. As the number of partitions increase, this as-
sumption becomes increasingly invalid. The solution is to
synchronize the processors with information about the row
lengths of other processors. However, this synchronization
causes a major bottleneck because of the frequent updates
that must be performed.

2.4.1 New Tools for Task Parallelism
Recently, tools such as Cilk/Cilk++ [7] [1] have been in-

troduced to reduce coding time (by automatically generating
and dynamically scheduling the tasks) and to improve the
quality of the result by detecting race conditions between
synchronized variables. In addition, various libraries and
concurrent languages have been proposed to ease the bur-
den on programmers.

One of the most promising deterministic approaches is
Precision Timed C (PRET-C) methodology [3]. PRET-C
uses a 4 stage process to insure determinism in a shared
memory environment. In the first stage, the C language is
extended using a small set of macros. Next, these macros
are converted into an intermediate format which allow easy
construction of a finite state machine. In the third stage,
the finite state machine is augmented with execution costs.
Finally, the worst case times are generated based on the set
of timed finite state machines and obey rules to maintain
safe synchronization.

2.4.2 Observations
Empirically, it can be observed [4] that problems where

progress has been made towards viable task parallel algo-
rithms are those problems which exhibit power or fractal
law distribution of communication requirements, that is,
p(x) ∝ L(x)x−α where α > 1 and L(x) is any function
satisfying limx→∞ L(tx)/L(x) = 1 and t is a constant. Any
problem requiring more communication has failed to be ef-
ficient like the previously mentioned high temperature an-
nealing regime.

Many problems that have been mapped successfully to
graphical processor units (GPUs) can be geometrically par-
titioned. Problems such as molecular modeling [16] and
temperature analysis have natural partitions. In addition,
the calculations tend to be local lowering the communica-
tion requirements. However, most CAD problems have ex-
ploited data rather than task parallelism in their application
to GPUs [9] [6].

From these observations, it can be conjectured that all
problems that can be partitioned geometrically with a frac-
tal distribution of communication have an efficient and scal-
able task parallel implementation.

3. CONCLUSIONS
In this paper, we presented various techniques that have

been applied to improve the state of the art in parallel CAD
algorithms. We have shown instance, data, and task paral-
lelism in algorithms and CAD algorithms be might beneficial
in their use. Most of the promising techniques are limited
to shared memory architectures whose scalability is still in
doubt. Much work needs to be done to offer a general and
flexible methodology for the incorporation of parallel algo-
rithms in to CAD applications.

4. REFERENCES
[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Executing

task graphs using work-stealing. In Proceedings of the
24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Atlanta, GA, USA,
Apr. 2010.

[2] G. Amdahl. Valitity of the single processor approach
to achieving large-scale computing capabilities. In
AFIPS Conference Proceedings, pages 483–485, April
1967.

[3] S. Andalam, P. S. Roop, and A. Girault.
Deterministic, predictable and light-weight
multithreading using pret-c. In Proceedings of the
Conference on Design, Automation and Test in
Europe, DATE ’10, pages 1653–1656, 3001 Leuven,
Belgium, Belgium, 2010. European Design and
Automation Association.

[4] G. B. Bezerra, S. Forrest, M. Forrest, A. Davis, and
P. Zarkesh-Ha. Modeling noc traffic locality and
energy consumption with rent’s communication
probability distribution. In Proceedings of the 12th
ACM/IEEE international workshop on System level
interconnect prediction, SLIP ’10, pages 3–8, New
York, NY, USA, 2010. ACM.

[5] G. E. Blelloch, S. Chatterjee, J. C. Hardwick,
J. Sipelstein, and M. Zagha. Implementation of a
portable nested data-parallel language. In Proceedings
of Principles and Practices of Parllel Programming,
pages 102–111, 1993.

[6] J. Cong and Y. Zou. Parallel multi-level analytical
global placement on graphics processing units. In
ICCAD, pages 681–688, 2009.

[7] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson. The
JCilk language for multithreaded computing. In
Synchronization and Concurrency in Object-Oriented
Languages (SCOOL), San Diego, California, Oct.
2005.

[8] F. Darema, D. A. George, V. A. Norton, and G. F.
Pfister. A single-program-multiple-data computational
model for epex/fortran. Parallel Computing,
7(1):11–24, 1988.

[9] Y. S. Deng, B. D. Wang, and S. Mu. Taming irregular
eda applications on gpus. In Proceedings of the 2009
International Conference on Computer-Aided Design,
ICCAD ’09, pages 539–546, New York, NY, USA,
2009. ACM.

[10] M. J. Flynn. Some computer organizations and their
effectiveness. IEEE Transactions on Computers,
C-21:948, 1972.

[11] S. L. P. Jones, R. Leshchinskiy, G. Keller, and
M. M. T. Chakravarty. Harnessing the multicores:
Nested data parallelism in haskell. In Proceedings of
Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 383–414,
December 2008.

[12] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy,
S. L. P. Jones, and B. Lippmeier. Regular,
shape-polymorphic, parallel arrays in haskell. In
ICFP, pages 261–272, 2010.

[13] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi.
Optimization by simmulated annealing. Science,
220(4598):671–680, 1983.

[14] R.-K. Perng, T.-H. Weng, and K.-C. Li. On
performance enhancement of circuit simulation using
multithreaded techniques. In International Conference
on Computational Science and Engineering, pages
158–165, Aug 2009.

[15] R. M. Russell. The cray-1 computer system.
Communications of the ACM, pages 63–72, 1979.

[16] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J.
Hardy, L. G. Trabuco, and K. Schulten. Accelerating
molecular modeling applications with graphics
processors. Journal of Computational Chemistry,
28(16):2618–2640, 2007.

[17] D. Wall. Limits of intruction-level parallelism. In
ASPLOS-IV Proceedings of fourth international
conference on Architectural support for programming
languages and operating systems, pages 176–188, April
1991.

