
ParC – Extending C++ for 
Complete System Design 

Author: Kevin Cameron

Introduction

Over the last couple of decades electronic systems have become very complex, and all 
indications are that the complexity will continue to increase. Particular trends that are 
problematic  for designers are the requirement  for integrating multiple  processor cores 
along with peritheral interfaces and memory as well as analog and RF circuitry for SoC 
(System-on-Chip). In addition to the increasing hardware complexity, these systems also 
have  increasingly complex  software,  often  targeting  different  processors  for  different 
functions  like  DSP and graphics.  The combined  complexity of  the hardware  and the 
software makes each generation of systems exponentially harder to design and verify.

A  secondary trend  in  Silicon  is  that  although  devices  get  faster  every  time  process 
geometries shrink,  wiring resistance scales adversely, and it is harder to improve single 
processor  throughput,  so computing  is  moving to  using multi-core  chips  and parallel 
processing  to  improve performance.  In a  decade  the  number  of  cores  in  the  average 
computing platform will probably be in the hundreds.

HDLs and Programming Languages

Because all  the tasks involved in  designing complex systems were originally handled 
separately each tends to have it’s own toolset e.g.: Spice for analog, Verilog/VHDL for 
logic design and C/C++ for software. Very few of the existing CAD tools are capable of 
parallel processing so in general they are not keeping pace with the complexity of new 
designs, and they are not well integrated with each other either. Most existing CAD tools 
are highly optimized single threaded applications that cannot easily be converted to take 
advantage of parallel processing hardware. Those that have been converted to run on SMP 
will will probably need a rewrite when SMP ceases to scale due to the cost of maintaining 
coherent  memory, physical  limitations  and Amdahl's  law– maybe at  the tens of cores 
mark.

In  order  to  be  able  to  design  systems  when  the  relative  performance  of  tools  for 
simulation etc. continually declines system designers push up the level of abstraction at 
which they work to reduce the relative complexity and get the job done in reasonable 
time. This has lead to the use of C++ for modelling hardware (as SystemC) at system 
level, but that leaves a gap between the design level and the implementation level. A 
rough map of which levels of simulation abstraction are handled by which languages is 
shown below. 



C++ is not shown as reaching down to RTL and below is because it becomes awkward for 
users to describe hardware at that level due to the lack of direct support for fine grained 
multi-threading. VHDL doesn’t have the same expressive power as C++ and has some 
dysfunctional semantics where it  crosses into the analog domain:  it  is  not possible to 
bridge domains transparently or bidirectionally without timing errors as it is with Verilog- 
AMS (but Verilog-AMS has no user-defined types). SystemVerilog added a lot of the 
expressive power of C++ to Verilog but uses different syntax and semantics and most of 
the object-oriented features are aimed at verification rather than hardware description.

The main difference between C++ and Verilog or VHDL is that the HDLs support light- 
weight multi-threading within the language whereas C++ only supports multi-threading 
through  the  use  of  external  library  code  which  results  in  a  much  higher  per-thread 
overhead: for a large design containing millions of gates an HDL can easily handle have a 
thread per gate whereas C++ would probably run out of memory or spend all it’s run time 
in the mechanics of switching thread context.

Despite  the  fact  that  HDLs  describe  systems  in  terms  of  threads  that  logically  run 
concurrently  there  are  few successful  parallel  processing  simulators,  and  similarly 
although C++ (as SystemC) has a fairly high cost in terms of the user effort required to 
describe a multi-threaded system there does not appear to have been much effort put into 
making it run parallel.

C and C++ are the primary languages for software design and are available from multiple 
vendors  as  well  as  from the  open source  community for  free1.  Although HDLs have 
acquired many of the capabilities of C and C++ few people would consider using an HDL 
for  developing a  regular  software application.  That  means when considering a whole 
system there is usually a fairly well defined boundary between the hardware and software, 
possibly only crossed by the odd tool that does high level synthesis from C/C++ to RTL 
(Verilog/VHDL for hardware synthesis), and the tools used on the software side are very 

1 Part of the motivation behind SystemC

Transaction               RTL                 Transistor

Abstract Analog

C++                         (SystemC)
Spice

SystemVerilog Verilog Verilog -A

VHDL VHDL-A 



likely to be completely different from those used on the hardware side.

Similar to the split between hardware and software are the internal splits between analog, 
digital  and RF within the hardware design.  This  has partly been perpetuated by poor 
progress at organizations like Accellera and the IEEE at developing and combining the 
standards, e.g. Verilog-AMS was developed at Accellera but was neither transferred to 
the  IEEE  for  integration  with  the  IEEE  Verilog  standard  or  integrated  with  the 
SystemVerilog standard as it worked it’s way through to the IEEE. Very little work has 
been done on integrating RF with Verilog (System or AMS), and very little has gone into 
providing back-annotation for SystemVerilog or Verilog-AMS and other issues related to 
power management - Verilog and VHDL date back to when digital circuits usually had 
only one set of power rails. 

It is unlikely given the slowness of the language development process at the IEEE and 
Accellera,  and the EDA companies  dependence on the existing plethora of  tools  that 
VHDL or SystemVerilog will improve greatly in the forseeable future. 

Methodology

Traditional digital design methodology is synchronous, i.e. the description of the desired 
behavior (used by synthesis or verification) includes the clocking schemes. This causes a 
couple of problems for the tools: it is difficult to extract the actual required function and it 
is therefore difficult to implement the design with a different clocking scheme (with clock 
gating) or asynchronous.  Ideally, functionality and timing/power constraints need to be 
defined  separately  so  that  the  functionality  part  is  reusable,  and  constraints  can  be 
tweaked for different taret platforms.

Most SoC designs use a lot of predesigned blocks (IP), so most of the effort in completing 
a design goes into creating the interconnect between the blocks. Since the “reach” across 
a  chip -  how many devices  you can  communicate  with  in  a  clock cycle  for  a  given 
frequency - shrinks as device dimensions shrink due to wire resistance scaling adversely, 
maybe multiple stages of data buffering are required between initiators  and targets or 
peers. Describing how all this communication works is done most easily at the system 
level with asynchronous point-to-point software communication mechanisms that can be 
mapped into hardware communication mechanisms by communication synthesis tools. 

None  of  the  HDLs  mentioned  above  or  SystemC  have  primitive  mechanisms  for 
representing  the  point-to-point  communication  required  for  supporting  asynchronous 
descriptions or communication modelling. Transaction-Level-Modeling in SystemC is the 
nearest thing, but is not very abstract (so not for programmers).



Parallel Processing

The main reason that parallel processing has not gained much traction in simulation is 
that the use of a synchronous/RTL design style leads to intrinsically unstable simulations 
that are hard to debug. Parallel processing simulation works better for descriptions with 
full timing information so that event ordering is (nearly) the same for the parallel and 
single threaded cases, however including that extra detail slows down simulation, which 
probably relegates parallel processing simulation to the backend of the design process for 
standard  HDLs.  A  number  of  attempts  have  been  made  by people  to  build  parallel 
simulators, but their general lack of (commercial) success has discouraged the larger EDA 
companies from developing such products, and as mentioned above the existing products 
are highly optimized as single-threaded applications that cannot be easily converted to do 
parallel processing. The efficiency of parallel processing solutions depends on the ratio of 
computation to communication,  i.e. when a task is split  between processors there is a 
communication and synchronization overhead and if the overhead is too high there is no 
gain in throughput, for that reason parallel analog simulation has received more attention 
since the matrix solvers in Spice simulators are very compute intensive and so give a 
good c/c ratio if the circuit can be partitioned (a non-trivial exercise). 

Software tools for debugging multi-threaded software are not generally as good as HDL 
debuggers, although some SystemC debug environments are solving the problems. The 
major problem with parallel  processing C/C++ is that the mechanisms for controlling 
cross-thread data  access  tend to  be quite  heavy-handed because the compilers  do not 
understand  multi-threading  and  all  operations  are  performed  by library functions2 so 
developers tend to avoid using them and subsequent bugs due to indeterminate ordering 
(and overlapping) of data access can be extremely difficult to find when threads actually 
run concurrently. Multi-threaded applications that run with a single thread of control (no 
concurrency) are easier to debug but don’t provide any performance gain for the increase 
in complexity.   

2 Posix Threads - http://www.llnl.gov/computing/tutorials/pthreads/



CSP
Communicating sequential processes (CSP3) is a software design paradigm for parallel 
processing proposed by Tony Hoare4 - this and other major research work on verifiable 
computing earned him a Knighthood. It is basically a methodology where the code that 
does the work is described in fairly small  chunks of procedural code (single threaded 
processes) that  communicate  with each other by passing messages over point-to-point 
channels.  CSP was partly conceived as a way to develop parallel processing software that 
would be formally verifiable  since each process behaves much like  an isolated state-
machine. Symmetric parallel processing based methods (i.e. shared memory and mutexes) 
is a more popular paradigm than CSP since it mirrors how current hardware works (multi-
core  unified  memory),  and  MPI5 has  gained  some  traction  for  applications  needing 
message passing  (for distributed computing), however neither of those approaches map 
very well into hardware/system modelling.

Message  passing  paradigms  like  CSP  map  well  into  an  asynchronous  hardware 
description methodology since the individual processes do not need to consider time the 
way that (say) processes in a Verilog simulation do, e.g. where a Verilog process might be 
sensitive to a clock and reads data synchronously from a signal, a CSP process is just 
sensitive to data arriving on a channel. It also has the advantage that any one process is 
essentially unaware of what kind of processes are on the other end of the channels it 
communicates over so it is easy to mix hardware and software processes which simplifies 
design refinement, and describing heterogeneous processor systems.

CSP channels also map well to serial busses like PCI Express, USB, Firewire etc. for 
modeling board level systems or ethernet etc. for networked systems.

MPI doesn’t lend itself to hardware modelling because the channels are not declared, i.e. 
any process can send messages to any other process without having to declare the channel 
first, so it is hard to extract the communication requirements for synthesis. 

Rationalizing the Design Flow

As  described  above,  the  current  set  of  systems  design  tools  are  a  poorly  integrated 
hodgepodge, and are not improving in performance at the same rate as their supporting 
hardware. To fix this problem requires improving the performance and breadth of some 
(or one) of the tools so that others fall by the wayside. What the new/improved tools have 
to do is handle design from software to transistors in a unified environment using parallel 
processing and supporting asynchronous design methodologies. 

Because the user base of C/C++ is considerably larger than that of HDLs and it seems 
extremely unlikely that software engineers will  suddenly start  using SystemVerilog or 

3 http://www.usingcsp.com/

4 Sir Charles Antony Richard Hoare - http://en.wikipedia.org/wiki/C._A._R._Hoare

5 http://www.mpi-forum.org/



VHDL for programming, extending C++ to handle areas it doesn’t currently support has 
the  most  appeal.  In  particular  extending C++ to  handle  multi-threading (and parallel 
processing) within the language itself (rather than the current approach using libraries) 
would be a huge boon without considering the benefits in hardware modelling. Since C++ 
is otherwise a functional superset of most other languages it is not hard to translate other 
languages (Verilog and VHDL) into the extended C++ for backward compatibility. 

ParC was developed for this purpose, initially as an ESL language to replace SystemC, 
latterly as a programmer friendly approach to parallel processing for multiple platforms 
(e.g.  FPGA and GP-GPU).  It is  superior to  other approaches  like  OpenCL, TBB and 
CUDA because it works at a higher level of abstraction and is not platform dependent.

ParC Extensions

The extensions needed for C++ to handle hardware modelling down to transistors are 
fairly straight forward and include the addition of the primitive elements seen in HDLs. 
These basic elements include:

• Signals

• Processes

• Modules

The  additional  functionality  required  to  support  asynchronous  design  and  CSP  style 
parallel processing is a simple fifo/pipe object. The use of inheritance and templates in 
C++ make it possible to produce a broad range of functionality without having to define 
many constructs - the language reference manuals for HDLs tend to be large volumes due 
to  poor  language  design,  and  not  giving  the  designers  the  capability  to  do  things 
themselves. 

The extensions  above require  modifying the  C++ compiler  frontend (which  does  the 
parsing),  and  also  providing  a  runtime  kernel  that  supports  the  multi-threading  and 
coordinates the interaction of the processes with signals and channels. The runtime kernel 
is also responsible for managing parallel processing.

Other  functionality that  would  be handled by the  kernel  (optionally)  would  be  back- 
annotation (maybe initially from SDF).



ParC Additional Functionality 

ParC is intended to be a superset of existing HDLs and C++ so that HDL (and SystemC) 
descriptions can be converted to ParC, or at least those parts used for hardware modeling. 
There are a number of features missing from HDLs and badly designed features that can 
be improved upon by moving to ParC, these include:

• Dynamic hardware reconfiguration

• Better assertion timing

• Better mixed signal support (multi-type signal resolution, inc. analog and RF)

The dynamic reconfigurability capability is useful for modelling hot-plugging or systems 
where  components  may change in  function  e.g.  FPGAs,  or  for  modeling  component 
failure. Verilog and VHDL are static descriptions,  which may be satisfactory for chip 
design, but really is inadequate for complete systems.

The  assertion  timing  issue  comes  from some  unnecessarily complex  clock  definition 
syntax and semantics in SystemVerilog and some semantic deficiencies in VHDL. 

The  improved  mixed  signal  support  comes  from using  different  semantics  for  signal 
resolution6 than VHDL (whose the hierarchical resolution and port-bound type conversion 
schemes  make  describing  bidirectional  signal  flow  near  impossible),  and  supporting 
multi-type resolution which is not supported by SystemVerilog. Most analog simulators 
like Spice have internal models written in C or C++ so it’s not much of a leap to use ParC 
instead of  (say)  Verilog-A, most  of  the hard work is  done in  the solver  (part  of  the 
kernel),  making the analog talk  to  the digital  (cross  domain  resolution)  is  a  problem 
already solved by Verilog-AMS but the ParC implementation can fix some of the issues 
with how it  works with respect to power distribution not addressed by Verilog-AMS. 
Integrating RF (as spectral domain) requires being able to support complex arrays (for 
Fourrier Transforms) which is possible in VHDL and SystemVerilog as well as C++, but 
neither  VHDL or  SystemVerilog has  the mechanisms for  handling that  kind of  cross 
domain communication automatically. The job of locating the resolution functions and 
modules required to make the various forms of resolution work is that of the runtime 
kernel, and will be relatively transparent to users.

6 How the value of a wire connected to different sources is evaluated.



ParC Backend Support

ParC can be implemented by using a preprocessor or modified parser and a simple single- 
threaded kernel. To gain the full benefit of the multi-threading and parallel processing 
requires modifying the C++ debuggers so that they comprehend the threading model and 
the correspondence between code and thread instances - C/C++ debuggers generally don’t 
understand lightweight threading other than Posix threads, making debugging somewhat 
awkward (though not impossible). SystemC debuggers already handle the multi-threading 
multi-instance case but are unlikely to handle the parallel processing or CSP aspects of 
ParC  because  SystemC  does  not  directly  support  CSP  style  multi-threading  (so  the 
debugger would have to understand the intent of the users’ code). The sc_fifo and TLM 
components in SystemC can be implemented over channels in ParC to enable parallel 
processing.

For systems using CSP style parallel  processing the kernel can provide the hooks for 
analyzing traffic in the channels, but it is useful if the debugger understands them too so 
that it is easy to traverse from one process to another. 

Debugging for analog depends on the capabilities of the analog solver (kernel), noting 
that there is likely to be multiple analog solvers running in parallel for a full system.   

If ParC is compiled to a standard kernel API the code can be shared while protecting the 
designers’ IP. 

Conclusion

The current tools and methodology for system design are rooted in old approaches to 
design and are not keeping pace with the evolution of Silicon technology. Many problems 
in software design have been solved with C++ and it’s associated tools, however those 
improvements have not been migrated effectively into the realm of hardware design, and 
C++  itself  fails  to  exploit  the  parallel  processing  capabilities  of  modern  computing 
hardware.  ParC solves  this  problem by extending C++ to  handle  low-level  hardware 
descriptions and fine-grained parallel processing, and simplifies the job of the designer by 
reducing the number of languages they need to learn to get their job done, and allows the 
use of a single development environment for software and hardware from ESL to RTL 
and transistors. ParC also unifies analog and digital design which is important for single 
chip  SoC  solutions  and  handling  the  growing  analog  issues  with  shrinking  devices 
dimensions. The unified environment of ParC also makes it easier to reuse verification 
testbenches as the design is refined from the ESL to RTL levels. 

ParC provides the basic building blocks for new asynchronous design methodologies and 
tools, in particular a CSP approach to design that is more easily formally verifiable, and 
supports high-level architectural analysis.

In addition ParC provides a platform for developing software applications that can take 



advantage  of  new  parallel  and  heterogenous  hardware,  like  multi-processor  game 
machines, or the latest generation of multi-core CPU,  as well as FPGA and GP-GPU. 
ParC should ultimately replace existing tools  like VHDL and Verilog because  it  will 
support much of the same functionality and will span a wider user base.


	CSP
	ParC Extensions

