Mechanical Computing Redux: Relays for IC Applications

Tsu-Jae King Liu

Electrical Engineering and Computer Sciences Department University of California at Berkeley

Collaborators: Elad Alon (UC Berkeley) Vladimir Stojanovic (MIT), Dejan Markovic (UCLA)

EDP 2010 Symposium Workshop

Power Density Scaling – NOT!

- Due to off-state leakage, V_{TH} cannot be scaled down aggressively. Thus, the supply voltage (V_{DD}) has not been scaled down in proportion to the MOSFET channel length.
- → CMOS power density has increased with transistor scaling!

Parallelism

 Parallelism is the main technique to improve system performance under a power density constraint.

CMOS Energy vs. Delay

CMOS (and CMOS-like) technologies fundamentally have a lower limit in energy per operation, due to off-state leakage (I_{OFF}).

$$E_{total} = E_{active} + E_{leak} = \alpha L_d C V_{DD}^2 + L_d I_{OFF} V_{DD} t_{delay}$$
$$t_{delay} = L_d C V_{DD} / (2I_{ON})$$

 α = activity factor; L_d = logic depth; C = capacitance per stage

What if There Were No Leakage?

□ V_{DD} decreases \rightarrow energy decreases

Mechanical switch offers zero leakage current and steep switching behavior

*R. Nathanael et al., "4-Terminal Relay Technology for Complementary Logic," IEDM 2009

Relay Technology

4-Terminal Relay Structure & Operation

R. Nathanael et al., IEDM 2009

Measured $I_{\rm D}$ - $V_{\rm G}$ Characteristics

• NMOS or PMOS operation is achieved with appropriate body bias:

- Zero off-state leakage; S < 0.1mV/dec
- Hysteresis due to pull-in mode operation & surface adhesion force

Impact of Body Biasing

- Body biasing can be used to reduce the gate voltages for switching.
- Increased hysteresis seen for $V_{\rm B}$ < 0 is due to gate-oxide charging (DC voltage stress during measurement).

Switching Delay

- Turn-on delay improves with gate overdrive, and saturates at ~200ns for $V_{\rm B} = 0V$.
- Turn-on delay improves w/ body biasing to reduce V_{PI}
 → 100ns turn-on delay
 - \rightarrow 100ns turn-on delay

Complementary Relay Inverter

Complementary operation is achieved via body biasing

• $V_{PI,n} \ge V_{RL,p}$ & $V_{PI,p} \le V_{RL,n}$ for abrupt VTC and zero crowbar current.

• For maximum noise margin, switching should be symmetric about $V_{DD}/2$ with minimum hysteresis.

Demonstration Test Chip

- Test devices
- Adders
- Flipflops/Latches
- 7:3 Compressor
- SRAM, DRAM
- DAC
- ADC
- Oscillators

Relay Latch Circuit

• Designed as for MOSFETS, but this not always optimal...

Relay-Based IC Design

The 4-T Relay as a Logic Element

- 4-terminal design mimics MOSFET operation
 - Actuation is independent of source/drain voltages
- Electrostatic actuation is ambipolar
 - → Non-inverting logic is possible

F. Chen et al., ICCAD 2008

Digital Circuit Design with Relays

- <u>CMOS</u>: delay set by electrical time constant
 - Quadratic delay penalty for stacking devices
 - Buffer & distribute logical/electrical effort over many stages
- <u>Relays</u>: delay dominated by mechanical movement
 - Can stack ~100-200 devices before t_{d,elec} ≈ t_{d,mech}
 - So, want all relays to switch <u>simultaneously</u>
 - → Implement relay logic as a single complex gate

Relay Carry Generation Circuit

 Demonstrates propagate-generate-kill logic as a single complex gate

4-T Relay Compact Model

- Lumped Verilog-A model for circuit sims:
 - Mechanical dynamics: spring (k), damper (b), mass (m)
 - Electrical parasitics: non-linear gate-body (C_{gb}), gate-channel (C_{gc}), and source/drain-body cap (C_{s,db}), contact resistance (R_{cs,d})

Model Calibration

- Lumped model matches measurements
- Use calibrated models for circuit design

Relay Scaling

- Constant E-field: mechanical delay and V_{PI} scale linearly
 - Assuming surface forces scale

 For a 90nm device: V_{Pl} ~200mV, t_{Pl} ~10ns @ V_{dd} = 1V (cantilever beam with W = 90nm, H = 90nm, t_{gap} = 10nm, L = 2.3um)

Benchmarking Relays vs. CMOS

- Delay Comparison vs. CMOS
 - Single mechanical delay vs. several electrical gate delays
 - For reasonable load, relay delay unaffected by fan-out/fan-in
- Area Comparison vs. CMOS
 - Larger individual devices
 - Fewer devices needed to implement the same logic function

Energy-Delay Comparison

• For similar area: >9x lower E/op, >10x greater delay

¹D. Patil et. al., "Robust Energy-Efficient Adder Topologies," in Proc. 18th IEEE Symp. on Computer Arithmetic (ARITH'07).

F. Chen et al., ICCAD 2008

Benefit of Parallelism

- Can extend energy benefit up to GOP/s throughput
 - As long as parallelism is available

Effect of Contact Resistance

- Low contact R not critical
 - Enables low force, hard contact material
- → Good news for reliability

Contact Endurance

- Variations are likely due to Woxidation
- No surface wear is seen after 1 billion ON/OFF cycles

H. Kam et al., IEDM 2009, R. Nathanael et al., IEDM 2009

Relay Energy Limit

- Spring restoring force must be able to overcome surface adhesion force F_A .
- For large contacts, F_A scales with area:

- Extracted surface adhesion energy ≈ 5 µJ/m²
- Ultimate relay energy limit set by required R_{on}

Summary

Summary

- Due to transistor off-state leakage, CMOS technology has a fundamental limit in energy efficiency.
- Mechanical switches have zero leakage and thus may achieve substantially lower energy/operation.
 - Much progress has been made toward a high-yield, reliable micro-relay technology suitable for IC applications.
- New circuit and system architectures are needed to fully realize the benefits of relay technology.
 - Potential CMOS replacement for low-throughput/parallel applications

Acknowledgements

Collaborators:

- Vincent Pott, Hei Kam, Rhesa Nathanael, Jaeseok Jeon
- Fred Chen (MIT), Matthew Spencer, Hossein Fariborzi (MIT), Chengcheng Wang (UCLA)

Funding:

- DARPA/MTO NEMS Program
- DARPA/MARCO Focus Center Research Program
 - Center for Materials, Structures, and Devices (MSD)
 - Center for Circuits and Systems Solutions (C2S2)
- UC Berkeley Microfabrication Laboratory
- Berkeley Wireless Research Center