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Energy Efficiency of Contemporary Digital ICs 

  Much of the concern these days in energy efficiency is seemingly at 
higher levels … which is good    

  But, how much energy is wasted at the synthesis/physical design 
level? 
  At least 25% in dynamic power 
  At least 50% in total power 

  Now that’s significant! 



Why So Much Energy Waste? 
  Designers use the same library for both synthesis and physical 

design (place and route) 
  Very bad idea 
  The library that gives the best synthesis results is not the library that will give 

you the best post physical design results (power, delay) 
  Ironically, the physical cell library can be very small, greatly reducing 

library upkeep 
  My observations are that cell libraries are like ant or rodent traps … once 

something gets in, it never gets out … 



Why So Much Energy Waste? (cont’d) 
  You have to make sure that each micron (ok, nm) of transistor size 

is actually doing something critical 
  Need an optimal and efficient optimal gate size selector, before physical 

design, after initial physical design and after later physical design 
  And of course you have to have appropriate drive strengths and beta ratios for 

the physical library cells. 
  You won’t want to use a VT any higher than absolutely necessary for 

any cell 



Toward Optimal Power Efficiency 
  Major elements: 

1.  Employ something that approaches an optimal synthesis library (very different from 
an optimal physical library) 

2.  Employ something that approaches an optimal physical library 
3.  Aim at near-optimal arithmetic networks (and thus must nail down THE way to 

implement a Full Adder (FA)) 
4.  Optimal continuous gate size selection 
5.  Near-optimal discrete gate size selection 
6.  Near-optimal VT selection 

  Tie-in with placement is important 



Optimal Continuous Gate Size Selection 
  First globally optimal, robust Lagrangian relaxation-based continuous 

gate sizer (Forge) 
  Extremely accurate cell delay models are based on the actual .lib cell 

characterization data 
  The delay we get is the same delay reported by leading STAs 
  Two modes of operation 

  Generates the global minimum power for any desired delay 
  First generates the fast possible design, then the lowest power design, and finally a 

set of (e.g., 10-20) delay points in between, each with minimum power 



Near-Optimal Discrete Gate Size Selection 
  The continuous-sized solutions are then converted to library-based, 

discrete gate size solutions 
  Very first discrete approach to obtain results CLOSE to the global 

minimum continuous results 
  First discrete gate sizer that nearly optimally assigns Vt’s among the 

selections available in the library 
  Handles multiple clock domains 
  Handles commercial chips today, millions of cells 
  Applicable to ANY structural (Verilog) netlist at any point in design 

flow 
  Pre layout 
  Post layout 
  With or without wire load model 
  With or without actual wiring parasitics 



Results Summary 

  Based on several large commercial blocks, we obtain > 35% power 
reduction for the same delay vs. leading EDA tools 
  > 50% leakage reduction for the same delay 
  Integrated with leading synthesis tools 



Discrete Sizing – 300MHz Industrial Block 

  65 nm process – 125oC 0.9V SVT 
  Total gates : 46,132 (excluding registers) 



Discrete Sizing – 300MHz block (Zoomed) 

  Average area increment over continuous sizing 1.55%   



Discrete Sizing – 900MHz block 

  Total gates : 49,614 (excluding registers) 



Discrete Sizing – 900MHz block (Zoomed) 

  Average area increment over continuous sizing 6.78%   



Leakage Power – 300MHz Block 

~3X Leakage Reduction 
(combinational gates only) 



Leakage Power – 900MHz Block 

~2.5X Leakage Reduction 
(combinational gates only) 



VT Selection – 300MHz Block (Delay 2250ps) 
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VT Selection – 900MHz Block (Delay 750ps)  
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TI Benchmark 
  Clock Period: 2.032 ns 
  125,000 sizeable cells 
  Process:  40nm  

  Process corner  
•  Delay optimization - 125oC 0.9V  
•  Leakage optimization - 105oC 1.05V 



Processing Steps 
  Obtained verilog netlist from placed and routed design 
  Flattened all positive unate, non-unate and complex gates 
  Generated relative placement constraint for each flattened gate 

  Single row, multiple columns 
  Updated component list in the .def file 
  Read .def and legalize placement 
  Route 
  Extracted RC (wire load) for gate size selection  



Sizeable Gate List 

  INV 
  ND2 
  ND3 
  ND4 
  NR2 
  NR3 
  AOI21 
  AOI22 
  OAI21 
  OAI22 

  AOI31 
  AOI32 
  AOI33 
  AOI211 
  AOI222 
  OAI31 
  OAI222 
  AOAI211 
  OAOI211 
  MAJI3 

These are NOT all power efficient cells … but the “customer” used them … 



Flattened Cells 

Cell Structure 
Transistor Count 

Flattened Industrial 
xnor2   nand2 + oai21  10 12 
xor2   nor2 + aoi21  10 12 
xnor3   xor2 + xnor2  20 22 
xor3   xor2 + xor2  20 22 
xnor4   xor2 + xor2 +xnor2  30 30 
xor4   xor2 + xor2 + xor2  30 30 
mux2   inv + aoi22 + inv  12 12 
muxi2   inv + aoi22  10 10 
mux3   (inv + aoi22) + (inv + inv + oai22)  22 20 
mux4   (inv + aoi22) + aoi22 + (inv + oai22)  28 26 
nand2B   inv + nand2  6 6 
nor2B   inv + nor2  6 6 



Flattened Cell Structure (Cont.) 

Cell Structure 
Transistor Count 

Flattened Industrial 
ao2bb2  nand2 + oai21  10 10 
oa2bb2  nor2 + aoi21  10 10 
ao21b  nand2 + nand2  8 8 
mux2and2  nand2 + inv + inv + oai22  16 14 
mux2or2B  inv + nor2 + inv + inv + oai22  18 16 
buf   inv + inv  4 4 
or2   nor2 + inv  6 6 
an2   nand2 + inv  6 6 
or3   nor3 + inv  8 8 
an3   nand3 + inv  8 8 
or4   nor2 + nor2 + nand2  12 12 
an4   nand4 + inv  10 10 



Flattened Cell Structure (Cont.) 

Cell Structure 
Transistor Count 

Flattened Industrial 

or5   nor3 + nor2 + nand2  14 14 
an5   nand3 + nand2 + nor2  14 14 
or6   nor2 + nor2 + nor2 + nand3  18 18 
an6   nand3 + nand3 + nor2  16 16 
ao21   aoi21 + inv  8 8 
ao22   aoi22 + inv  10 12 
ao222   aoi22 + nand2 + nand2  16 18 
ao2222   aoi22 + aoi22 + nand2  20 24 
ao31   aoi31 + inv  10 10 
oa21   oai21 + inv  8 8 
oa22   oai22 + inv  10 10 
aoa211   aoai211 + inv  10 10 
oao211   oaoi211 + inv  10 10 



Flattened Cell Structure (Cont.) 

Cell Structure 
Transistor Count 

Flattened Industrial 
nand3B   inv + nand3  8 8 
nor3B   inv + nor3  8 8 
addh   xor2 + and2  16 16 
addf  xor2, xor2, maji3, inv 32 32 
addf42 addf + addf 56 56 



Continuous vs. Discrete Sizing Result 
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VT Assignment 

VT Type Combinational 
Gates 

Registers 

Extended High VT 47% 0% 
High VT 1% 0% 
Extended Standard VT 37% 100% 
Standard VT 14% 0% 



Results 

Original 
Base Line 

Forge 

Period (ps) 1950 1768 

  Performance 

Original 
Base Line 

Forge 

P_lkg comb (mW) 95.4 29.3 
P_lkg_seq (mW) 22.3 9.7 
Active_area (um) 317375 212594 

  Power 



Results (cont.) 

Original Base 
Line 

Forge 

w_gates (um) 317375 212594 
cell_count 103494 125943 
L_horiz_wire (um) 1400990 1434343 
L_vert_wire (um) 1698424 1697836 



Power Optimal Cell Library 

  INV 
  NAND2 
  NAND3 
  NOR2 
  NOR3 
  AOI21 
  AOI22 
  OAI12 
  OAI22 

  Plus ONE D-FF for each VT  !!! 
-  (Not counting scan-related cells …) 

ONLY 9 logic cells 
(easy to maintain library) 



Power Optimal Cell Library (cont’d) 
  INV 
  NAND2 
  NAND3 
  NOR2 
  NOR3 

  AOI21 
  AOI22 
  OAI12 
  OAI22 

  Ok, only 9 sizeable cells 
  Ah, but how many drive strengths? 
  And how many beta ratios? 
  Yeah, but what about the explosion in “global nets” with such “tiny” cells? 
  Good questions … we’ll take them one at a time 



Our Base Standard Cell Library (LIB) 

  IBM 130nm 1.2V 25C process technology 
  Wn’s in [0.28um, 7.84um], steps of 0.28um 
  Wp’s are any Wn times any of the beta ratios 
  The full set of beta ratios (Wp/Wn) is: 

  LIB is our full library and our objective is to find the smallest subset of 
these size and beta alternatives that yields similar power-delay curves 
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Same Effective Beta Range for Other Gates 
GATE βmin  βneutral  βmax  Total Betas 

INV 0.8 2.8 6.0 15 

AOI21 0.8 2.8 6.0 16 

OAI21 0.8 2.8 6.0 16 

AOI22 0.8 2.8 6.0 15 

OAI22 0.8 2.8 6.0 15 

NAND2 0.4 1.4 3.0 15 

NOR2 1.0 5.6 12.0 15 

NAND3 0.26 1.0 2.2 14 

NOR3 1.0 8.4 18.0 15 

3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 2.8 2.4 2.0 1.6 1.2 1.0 0.8 



Experimental Setup 
  Synthesize benchmarks with the leading commercial synthesis tool using 

the full library (LIB)  
  With wire load model 

  Generate the continuous power-delay curves for all benchmarks 
  Select three points on the continuous curve for each benchmark: min delay and two 

points in the “knee” of the curve 
  Then plot beta density function 



Beta Density Functions 
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Beta ratio 

Frequency 

Beta Density Functions (cont’d) 
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  Generate 5 test discrete libraries  
1.  LIB: full discrete library 
2.  GEO: Geometrically spaced Wn sizes: 0.28um, 0.56um, 1.12um, 2.24um, 4.48um 

along with all beta options   0.5X, 1X, 2X, 4X, 8X drives 
3.  LIN:  Linearly spaced Wn sizes: 0.28um, [0.56um-2.24um] in steps of 0.56um 

along with all beta options    0.5X, 1X, 2X, 3X, 4X 
4.  3SIGMA:  LIN but with discrete betas restricted to +/- 3 sigma of the mean beta 

computed for each gate 
5.  1.5SIGMA:  LIN but with discrete betas restricted to +/- 1.5 sigma of the mean 

beta computed for each gate 
  Beta of 1 included in 3SIGMA and 1.5SIGMA for down sizing off critical paths 

6.  1BETA:  Linearly spaced as above but with a single beta ratio 
  Beta chosen as the closest to the computed mean beta 

Which Cell Sizes Should We Pick? 

3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 2.8 2.4 2.0 1.6 1.2 1.0 0.8 



Library Beta Values 

Gate 3SIGMA 1.5SIGMA 1BETA 

INV 0.8  1.0  1.2  1.6  2  2.4 1.0  1.2 1.6  2.0 1.6 

NAND2 0.6  0.8  1.0  1.2  1.4  1.6  1.8  1.0  1.2  1.4 1.2 

NOR2 1.0  1.6  2.4  3.2  4.0 1.0 1.6  2.4  3.2 2.4 

NAND3 0.6  0.7  0.86  1.0  1.16  1.31  
1.46  1.61 

0.86  1.0  1.16 1.16 

NOR3 1.0  2.4  3.6  4.8 1.0  2.4  3.6 2.4 

AOI21 0.8  1.0  1.6  2.4  3.2 1.0  1.6  2.4 1.6 

OAI21 0.8  1.0  1.2  1.6  2.0  2.4 1.0  1.2 1.6  2.0 1.6 

AOI22 0.8  1.0  1.2  1.6  2.0  2.4 1.0  1.2 1.6  2.0 1.6 

OAI22 0.8  1.0  1.2  1.6  2.0  2.4 1.0  1.2 1.6  2.0 1.0 



Cell Count for Each Library 

Gate Number of Cells 
LIB GEO LIN 3SIGMA 1.5SIGMA 1BETA 

INV 420 75 75 30 20 5 
NAND2 420 75 75 35 15 5 
NOR2 420 75 75 25 20 5 

NAND3 392 70 70 40 15 5 
NOR3 420 75 75 20 15 5 
AOI21 448 80 80 25 15 5 
OAI21 448 80 80 30 20 5 
AOI22 420 75 75 30 20 5 
OAI22 420 75 75 30 20 5 
TOTAL 3808 680 680 265 160 45 



Benchmark b20 Mapped to LIB and GEO 

Average Delay Difference = 48ps (2%) 
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  Map points on the continuous power-delay curves to each of the 6 
libraries – LIB, GEO, LIN, 3SIGMA, 1.5SIGMA, and 1BETA 

  Measure performance deviation with respect to LIB 



Benchmark b20 Mapped to LIB and LIN 

Average Delay Difference = 24ps (0.9%) 
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Benchmark b20 Mapped to LIB and 3SIGMA 

Average Delay Difference = 26ps (1.0%) 
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Benchmark b20 Mapped to LIB and 1.5SIGMA 

Average Delay Difference = 45ps (1.7%) 
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Benchmark b20 Mapped to LIB and 1BETA 

Average Delay Difference = 232ps (8.9%) 
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40nm TI Process 1.0V 20k Cells 

3σ	


4beta LIN	


1.5σ	


1beta 

4beta GEO	




  Very low skew gates and high skew gates are rarely selected 
  3SIGMA library consisting of drive strengths 0.5X ,1X, 2X, 3X and 4X and 

beta ratios within βopt ± 3σ  (265 cells) 
  14X smaller library compared to LIB  
   0.8% performance loss 

  1.5SIGMA library consisting of drive strengths 0.5X ,1X, 2X, 3X and 4X 
and beta ratios within βopt ± 1.5σ  (160 cells) 
  25X smaller library compared to LIB  
  1.5% performance loss 

  1BETA library consisting of drive strengths 0.5X ,1X, 2X, 3X and 4X and a 
single beta ratio  (45 cells) 
  24% increase in power 
  9.1% increase in delay 

Library Conclusions 



Global Net Issue 
  Cell grouping in placement effectively knocks out the would-be extra 

global nets 



Pass Transistor Logic (PTL) 

•  Pass transistor logic based cells should NEVER be in a standard cell 
library 

•  Provably no benefit whatsoever 
•  How so? 

–  Let’s go on a short tour … 



Pass Transistor Logic (PTL) 

•  Seemingly very efficient and fast for 2:1 multiplexors 

S 

S 

S Out = SA + SB  

A 

B 

S S 

•  Only six transistors 
•  But, very poor layout efficiency, with several diffusion breaks 

  Standard cell width is considerably larger than it would be for a series-
parallel six-transistor gate 



Modern PTL 
•  Static timing analysis (STA) tools demand purely capacitive inputs 
•  The PTL MUX had to re-designed as follows: 

S 

S 

S 

A 
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S S 

Out = SA + SB  

•  Now 12 transistors! 
•  Plus diffusion breaks and poor layout efficiency 



PTL MUX -- Closer Look 
•  Let’s look at the encircled inverter-transmission gate pair 
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S 
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S S 

Out = SA + SB  



Inverter T-Gate Pair 
•  The following two circuits are absolutely identical 
•  But, the red wire is of no use 

–  It can only be used to help pull down the output by passing the 0 (gnd) through 
the  pMOS (with gate input S), which is not effective (easily verified) 

–  Similarly for the pull up case 
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PTL MUX 
•  Equivalence: 
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PTL MUX (cont’d) 
•  Equivalence: 

S 

S 
B A 
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S 
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A 

B 

OUT 
OUT 

•  With the red wire, it is an AOI22 gate 
•  But, is the red wire needed? 



PTL MUX (cont’d) 
•  Equivalence: 

S 

S B 

A S 

S 

S 

S 

S 

A 

B 

OUT 
OUT 

•  But, is the red wire needed? 
•  No, if the inputs are re-ordered! 
•  If A=B=0, OUT should be 1 anyway 

B A 



PTL MUX is EXACTLY an AOI22 Gate!! 
•  Equivalence: 

S 

S B 

A S 
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•  Much less layout area 

B A 

•  Can easily add an output inverter to both if desired 
•  Conclusion: DO NOT PUT EXPLICIT PTL MUX IN THE LIBRARY 

S S 



Ok, but what about PTL XOR? 

•  But, need to have inputs with a purely capacitance load to enable 
static timing analysis 
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Revised PTL XOR 
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Closer Look at the PTL XOR 
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•  Tri-state inverters are encircled 



PTL XOR Equivalence 
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PTL XOR Equivalence – Inputs Reordered 
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PTL XOR Equivalence – Inputs Reordered 
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•  The RED line does nothing! 
•  So, an AOI22 gate suffices to 

achieve equivalence 



PTL–Summary 
•  PTL MUX is EXACTLY this: 
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B 

•  PTL XOR is EXACTLY this: 

•  AOI22 plus inverters •  AOI22 plus inverters 
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XOR Implementation 
•  But, AOI22-based XOR has 12 transistors plus 2 diffusion breaks, so 

a cell width equivalent to 16 transistors 
•  NAND2-AOI12 XOR has 10 transistors, no breaks … so it wins!! 
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Full Adders 
•  The most area efficient adder: 

–  28 transistors (for non-inverted carry and sum) 
–  4 sizeable gates 



Full Adders (cont’d) 
•  The fastest full adder: 

–  2 XOR’s and NAND-based carry (3 NAND2’s and one NAND3) 
–  38 transistors 
–  8 sizeable gates 

carry xor 

xor 

a   b   c 

Cout Sum 

FA 



Full Adders (cont’d) 
•  The best full adder? 

–  2 XOR’s and mirror-carry 
–  32 transistors 
–  9 sizeable gates 

carry xor 

xor 

a   b   c 

Cout Sum 

FA 



Different 4:2 Implementations  

3 column 4:2 compressors by 
traditional FA (mirror type) 

3 column 4:2 compressors by 
only XOR and NAND-based 
carry generation 

3 column 4:2 compressors by 
XOR and mirror type carry and 
mirror FA (replacing some 
XOR-based FA) 
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Comparison of Multiplier Implementations 
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Full Adders 
•  The clear winner: 

–  2 XOR’s and mirror-carry 
–  32 transistors 
–  9 sizeable gates 

carry xor 

xor 
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Cout Sum 

FA 



Why So Much Energy Waste? (cont’d) 
•  Many digital blocks include appreciable digital signal processing and/

or arithmetic networks 
•  You have to make sure there are no carry-ripple delays and you have 

to make sure the compression trees use minimum power 
–  The latter requires the most power efficient full adder cell 
–  And one that is very “friendly” in gate size selection 
–  The leading commercial tools do not hit the mark here … 



Generalized Carry-Save (GCS) Arithmetic 
  DSP networks are largely an interconnection of adders, multipliers 

  Rippling of carries must be systematically avoided in arithmetic calculations  
  The carry operation is serial and thus many mathematical operations cannot be 

done in parallel  
  We have recently developed Generalized Carry-Save (GCS), which is a technique 

to parallelize addition and multiplication 
  All bits are added in parallel (essentially 4:2 compression) and in multiplication only 

the compression of partial products is employed 

  Adder delay is therefore independent of operand widths 
  Multiplier delay only depends on the logarithm of the multiplier width 



A Multiplier and Adder Network 

Carry-free compression to 2 final rows, whose 
addition equals “out” 

Partial products:  i 

out 

a b c d e f g h
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+
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+

+



Generalized Carry-Save Arithmetic for IIR 

C1*y(n-1) 

8:2 Compression 

C2*y(n-2) 

9:2 Compression 
x(n) 

4:2 Compression 

sum and carry 

One bit added 
due to 2’s 
complement 

Decimal point 



4:2 Compression 

X  X  X  X  X  X  X  X 

X  X  X  X  X  X  X  X 

X  X  X  X  X  X  X  X 

X  X  X  X  X  X  X  X 

S  S  S  S  S  S  S  S 

C  C  C  C  C  C  C  C   

Cin Cout 

•    Cout does not depend on Cin 



Ripple-Free 4:2 Compressor 

Cpass 

FA 

FA 

I1 I2 I3 

Cdr S 

I4 

Cpass-in 

FA 
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I4 
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Cpass 



Ripple-Free 6:2 Compressor 

FA 

Cp3 

Cp-in1 

FA 

I1 I2 I3 
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Cp-in2 Cp-in3 

S Cdr 



Sum of 16 16b vectors – TI 45nm 0.9V 

Leading synthesis tool 

Our GCS tool plus Forge discrete gate sizing 



Nvidia FMA Example – TI 45nm 0.9V 
  Multiplication and accumulation with absolute output 
  A(54b), B(56b) and C(164b)  
  Out = | A × B + C | 
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Why Do People Worry About Min-Delay? 
  No, really, why do people worry about min-delay (hold time)?? 
  Let’s consider the problem: 

Combinational 
logic DFFs DFFs 

φi+1 φi+1 

  Consider the “hold” for the ith capturing event in the 2nd bank of DFFs 
  This “races” with the (i+1)st capturing event in the 1st bank of DFFs 

€ 

φi+1  +  Tclk−>Q  +  TCLmin  −  Tskew  >  φi+1  +  Thold

€ 

TCLmin   >  Thold  −  Tclk−>Q  +  Tskew
  Thus: 



Min-Delay? 

Combinational 
logic DFFs DFFs 

φi+1 φi+1 

  For contemporary DFFs, Thold is negative and roughly two gate delays 

€ 

TCLmin   >  Thold  −  Tclk−>Q  +  Tskew

  So, in the absence of clock skew, TCLmin is negative by 4 gate delays!!! 
  You mean to tell me clock skew (in the worst case) is WAY more than 4 

gate delays?? 
  >> 4 gate delays??  (Now there’s a problem the CAD industry hasn’t 

addressed!!) 

€ 

Tsu  ≈  Thold



Min-Delay (cont’d) 

Combinational 
logic DFFs DFFs 

φi+1 φi+1 

€ 

TCLmin   >  Thold  −  Tclk−>Q  +  Tskew

  So, in the absence of clock skew, TCLmin is negative by 4 gate delays!!! 
  You mean to tell me clock skew (in the worst case) is WAY more than 4 

gate delays?? 
  The good news is that our gate size selection tool (Forge) is able to 

identify the optimal points in the network to add delay (buffers) to satisfy 
any desired TCLmin 

  And minimizes total area (and power) added in the process 



Energy Cost for Margins (Energy Margins)  

  Many today argue there is a HUGE energy cost for margins 
  So they say we need to go to asynchronous, software that tolerates errors, etc. 
  But they ignore the 4-100X overheads there … 

  Definitely can substantially LOWER your energy cost for margin 
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Ongoing Work 
  Still more work on defining the optimal synthesis library 

  Major new initiative: adding analysis of local statistical variations into 
the power optimization 



Conclusion 

•  Goal:  Toward optimal power efficiency in digital IC’s 

•  Message:  Existing tools and libraries leave a LARGE amount of 
energy on the table 

•  Conclusion:  We have devised means that seek to take a fair 
amount of that energy off the table 


