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3 Categories of Parallel problems / solutions

• It’s the solution not the problem that really defines the category

• Embarrassingly Parallel
– Compiling RTL modules in parallel

– Library Characterization of cells in parallel

– Place and Route of separate Hard Blocks in parallel

– Minimal intelligence to divide problem and merge results

• Course Grained
– RC Extraction, DRC and problems utilizing rectilinear regions

– Some intelligence to divide problem and merge results

• Fine Grained
– Static Timing Analysis

– Routing

– Physical Optimization

– Core Algorithm needs to be coded with parallel processing in mind
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State of the art in EDA

• From the 30,000 foot level and with a wide brush

• The embarrassingly parallel problems

– Have exploited parallel processing for 1 - 2 decades

• The coarse grained problems

– Have exploited parallel computing for about 1 decade

– Some firsts :

• Calibre DRC, Cadence/Simplex Extraction

• Synopsys ACS, Magma FineSim

• The fine grained problems

– This is where the innovation is recent or is needed

– Interesting things to talk about in other areas but will focus here
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Application Parallelization Models

Future

Distributed 

Application (DP)

CPU

Mem

CPU

Share Mem (SMP)

CPU CPU

Mem

Network

• No shared memory.  Connectivity by messages 

across network backplane 

•Requires application re-architecture work to 

synchronize computations due to lack of shared 

memory and crossing process boundary

• Excellent scalability, performance, and design 

throughput

Single threaded 

Application

CPU

Mem

• Easy to develop and  debug

Multithreaded 

Application 

(MT)

CPU

Share Mem (SMP)

CPU

• Shared Memory makes easy to 

thread/parallelize computations.

• Thread synchronization needed

• Scalability limited by hardware
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When to use each parallel model

• Single Threaded

– Non performance critical operations

– Wish it were still this simple

• Multi Threaded

– Scalability of problem is lower than cpus in one box

– Data set is hard to divide even though there is divisible work

– Very fine grained tasks where sending messages would be prohibitive

• Super Threaded

– Maximum scalability and flexibility

– Use of old single cpu legacy machines

– Data is divisible with problem

– Time spent in computations is large to offset message cost
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Creating a Distributed App

Transition

ST/MT DP

• Write a distributed task manager

• Coordinate computation dependencies

• Distributed job control

•Optimal use of distributed and multithread 

“SuperThreads”

• Fault tolerance and error recovery 

• Application Monitoring

• Location and platform independent communications

• DRM virtualization (independent from lsf, grid)

Partition Compute Merge

Distributed App (3 Phases)
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Amdahl’s Law

“Maximum expected improvement to an overall system 

when only part of the system is parallelized.”
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Gustafson's Law (AKA weak scaling)

If (1) the problem size grows as threads are added, and (2) 

the purely serial component remains fixed, then …

“Any sufficiently large problem can be efficiently parallelized.”
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Amdahl’s Law – Future Implications

What happens if we increase to 60 CPUs?
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Gustafson's Law – Future Implications

Now let’s look at 60 CPUs using Gustafson’s Law
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Result stability with increasing number of Cpus

• EDA users want the same results

– Adding cpu’s is like stepping on the gas

– Need to avoid torque steer

– Some small deviations can be tolerated

• Amdahl’s law tends to be a better model in this case

– Take the same app and make it go faster

– Speedup is based on the percentage of parallelization

• Over time the solution will change

– Gustafson's Law may take over

• In either case every step needs to be parallelized

– “End to end parallel processing” will be key
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EDA code is complicated
There is a lot of it

• Cadence EDI System example 

– 5M lines of code, most of which was not designed to run in parallel

– NanoRoute and QRC extraction are notable exceptions

• What if I told my boss we had to rewrite all of it?

– Good parallel code has to be done from the ground up

– Hard requirement for Many-Core

• Cache behavior and data locality

– For 4-8 Multi-Core we can take some engineering short cuts

• In the long term all of the code needs to be re-worked

– In the short term how can we make use of parallel processing

– Focus on time consuming steps

– Engineering creativity
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Example 1 : Parallel Reducer
Distributed Solution

Slaves run in separate processes

Communicate via TCP/IP

No threads or thread safety issues

Good data locality, overhead for data transmission

Bring up Parallel Framework

Parallelize calls to the parasitic reducer

Absolute worst case example of micro-transactions

Small bit of work with significant data transfer

Reduction is performed on each net before delay calculation, in any order

Use socket based parallelism for micro transactions

Benchmark Performance
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Communication Flow

Master Client – tcldrv

1 Copy
Slave Server – vmorTcl

N Copies

Launch  N Servers to unknown machines

Servers wake up and

send machine info to Master

via existing customer load balancing system

Master initiates socket connection to Server

Master sends a stage to reduce

Server sends reduced model

Sleeps

Master tells Servers to exit

Master exits

tcldrv EDP using lsf vmorTcl
Launches vmorTcl via existing

load balancing system
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Performance

Number of CPUs Walltime in seconds

1 1373

2 1596

3 994

4 666

Design has 16182 stages with coupling

Each stage reduced nine times

216 reductions per second using 4 CPUs

4.6 milliseconds per reduction

Simple Architecture
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Observations

• Micro-transactions with duration more than 5-10ms can be 
distributed with reasonable overhead

• Socket based programming is easy to debug if one is careful

– Make sure the interactions are very simple

– Try to make the interaction with the server at the tcl command level

– Server’s should be able to be debugged standalone by sourcing a 
logged set of tcl command messages

• 2K messages of 30KB length per second of bandwidth exists

– Benchmarked by sending roundtrip messages for 30 seconds

– 3 GHZ Linux Machine, 1Gbit connection

– This speed consumes all cpu on master and slave

– Our case had 216 messages per second of average length 10KB

– CPU usage of Master was about 8% with 10 cpu’s
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Observations

• Interrupt driven architecture must be used

– Master will sleep while waiting for servers

– Servers will sleep if not busy

– Polling for messages is very inefficient

• Servers are the slaves, Masters are the client

– Think of a web browser. It’s a client but it is in control of what the 

servers actually serve.

– Hence the terminology Master Client and Slave Server

• Side benefit of data locality

– Each slave builds data structures from the incoming TCP/IP 

message which are small and local
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Distributed compared with Threaded 
Programming

• Distributed programming advantages

– Can easily be applied to legacy code which is not thread safe

– Can scale to farms of cheap machines instead of expensive 

multi-cpu machines

• Threaded programming advantages

– Shared memory between threads

– No overhead to convert complex data structures to string 

messages

• In the future Many-Core machines locality will be key

– Which model will work better?
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Stateless versus State-full Servers.

• Stateless Server is a server that stores minimal state between transactions

– Message is received, data structures built, processing is completed, result is 
returned, memory is de-allocated

– Our vmorTcl server is stateless and its maximum memory use was about 250MB

– Just loading library data that won’t change is still considered stateless

• Stateful Server is a server that stores state between transactions

– If the servers load a design and then perform operations on it

– Synchronization of Master and Slaves can be very challenging

• There is a spectrum of choices, the more stateless the servers, the better

– Debugging is easier since each message is like a new run

– Memory use is less allowing use of cheap low memory machines

– Synchronization of Master and multiple servers is not an issue
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Parallel Programs running on farms

• Application should provide a DRM neutral UI

– Specify queue and machine requirements

– Specify number of cpus

• Application should never assume it can use all 

processors on a machine

– DRM allocates cpus based on resource string

– DRM does not enforce how many threads an app can start

• Many threads are for licensing, signal catching etc, low usage

– If the app takes all the cpus the grid machine will be overloaded
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Example 2 : Parallel Noise Analysis

• Must take advantage of multi-core processors

• Very hard to make legacy code thread-safe

• Long term solution: Rewrite all code

• Short-term solution: Copy on Write fork()



EDP 2010  – Tom Spyrou
22

What’s a Copy on write fork()?

• Process

– Shares no memory with parent

• Thread

– Shares all memory with parent (and other threads)

• Call to fork() with no exec()

– Shares all memory with parent – but read-only

– If memory is modified, automatically duplicated in child
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Fork() without exec() 

• In past fork() copied entire process

– Terrible if going to follow fork() of a large program with exec ls

– Double the memory is used

– About 10 years ago fork() started only copying the page tables

• Pages are marked “copy-on-write” (COW)

– Child and parent share read-only memory 

– Page tables are copied

– Page-fault scheme copies page about to be modified

– Much faster than a mutex

– Avoids most thread-safety issues
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/* Setup communication pipeline first */

if(pipe(commpipe)){

fprintf(stderr,"Pipe error!\n");

exit(1);

}

if( (pid=fork()) == -1){

fprintf(stderr,"Fork error. Exiting.\n");  /* something went wrong */

exit(1);        

}

if(pid){

/* A positive (non-negative) PID indicates the parent process */

dup2(commpipe[1],1); /* Replace stdout with out side of the pipe */

close(commpipe[0]); /* Close unused side of pipe (in side) */

setvbuf(stdout,(char*)NULL,_IONBF,0); /* Set non-buffered output on stdout */

wait(&rv); /* Wait for child process to end */

fprintf(stderr,"Child exited with a %d value\n",rv);

}

else{

/* A zero PID indicates that this is the child process */

printf("child process running with id %d\n",getpid());

printf("child part of parent.c = %d\n", child_test);

dup2(commpipe[0],0); /* Replace stdin with the in side of the pipe */

close(commpipe[1]); /* Close unused side of pipe (out side) */

// Useful work goes here    

}

Fork() without exec() code snippet 
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Copy-on-write 

Parent’s 

physical 

page

Parent’s 

virtual 

page

Child’s 

virtual 

page

Child’s 

physical 

page

Copy

UNIX Fork command 

starts new process

Data is modified in 

the child
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More COW fork () details 

• Ideal for analysis of large data with small output

• Parent MUST do all memory intensive work

• Relatively small additional time/memory cost

– Time cost depends on size of memory in parent

(800ms for 15Gig)

– About 2% memory overhead

• Number of forks running <= number of cpus available

• Use files/shared memory to return results
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Some current results 
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• Not a substitute for true multi-threading

• Short-term solution for legacy code

• Suitable for many data analysis commands

• Code can be made thread safe over time

– Move from fork() to pthread when ready

– Save memory overhead and time for page table copy

Conclusion 
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Case Study from 2008 
EDI System End to End parallel processing
Design : 1M instances, 4 Corners
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Fine Grained Parallelism in 
Core Netlist to GDS EDA algorithms

• Routing

– Commercial solutions exists

– Best in class scaled 10-12X on 16 cpus

• Static Timing/Noise Analysis of a single mode/corner pair

– Commercial solutions exists

– Best in Class scales 7X on 8cpus for analysis piece

– One company threads netlist and spef reading gaining more

• Physical Synthesis and Optimization

– Emerging area, commercial solutions parallelize embedded analysis

• Full flow scalability, netlist to gds, about 2X on 4cpus

– More possible with certain MMMC designs
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Conclusion

• Parallel processing is key to improving performance of EDA 

applications

• Many companies have implemented 

– Embarrassingly parallel solutions

– Coarse grained solutions

• A few companies have implemented

– Fine grained parallelism

– Multi-Core approaches to similar algorithms

• EDA and how it will work on Many-Core is the challenge

– When we have 128 cpus, users will expect them to be used

– Competitors who are behind will lose


