
Dealing with Hard Serial

Bottlenecks

 Patrick H. Madden

SUNY Binghamton Computer Science

Dept.

 pmadden@acm.org

 Warning: slides are intentionally

mailto:pmadden@acm.org

Sorry to keep beating this

drum…

Amdahl Olukotun Gustafson
ICCAD ‟07 panel

Arvind

… but this stuff is important.

It seems like only 5 years ago,

most people thought I was

insane….
 EDP05 talk – parallel is a recipe for disaster….

The Future of Computing

Background Reading

 http://www2.dac.com/front_end+topics.aspx?a

rticle=17&topic=1

 “Rethinking Parallel” in the Technical Articles

section of the new DAC web site

 Massively parallel computing makes no sense

to me. There is small scale parallelism

everywhere (2, 4, maybe 8 cores), but massive

parallelism is commercially useless

http://www2.dac.com/front_end+topics.aspx?article=17&topic=1
http://www2.dac.com/front_end+topics.aspx?article=17&topic=1

Hard Serial Bottlenecks

 Interesting problems where there are no competitive

scalable solutions (and extracting any speedup is

difficult)

 Why do we care? Amdahl‟s Law… If 10% of our

application relies on solving problems that are serial in

nature, we get a maximum of 10X speedup.

 We can make more cores… they‟re just useless.

 Where can we find these serial bottleneck problems?

 Surprisingly often in papers by parallel computing experts, who

are too busy with their bold visions to see how wrong they are.

Hard Serial Bottlenecks

 Garland, DAC08: GPGPU parallel shortest paths algorithm

 Parallel Bellman-Ford: O(E * V)

 Serial Dijkstra approach: O(E + V log V)

 Serial is faster(!)

 Jamsek, ASPDAC09: GPGPU rectangle overlap for

lithography applications

 Parallel brute force: O(n^2)

 Serial computational geometry approach: O(n log n)

 Serial is faster(!)

More Examples

 Sorting

 Lester advocates a parallel

rank sort: O(n^2)

 Serial quicksort: O(n log n)

 Serial is faster!

 Shortest path

 Same mistake as Garland

DAC paper

 Serial is faster!

And even more....
 Reinders TBB book (Intel),

latest edition of CLRS text
 Parallel recursive Fibonacci:

O(2^n)
 Serial alternatives: closed form,

or O(n) dynamic programming
 Serial is faster!

 Note: CLRS is absolutely clear
about what a bad idea the
parallel version is, and
Reinders notes the “more
efficient” approach in a side-
bar

This is a strange world

 Leading research groups are publishing material that is obviously,

horrifically flawed

 It‟s gone through peer review, editors, program committees, and down

the gullets of an audience one would expect to be at least a bit skeptical.

 The errors are not subtle. They‟re right up front, in your face, and

should be stuff that any person with an undergrad degree in computer

science can catch.

 What kind of science are we doing?

 If all it takes to get funding or a publication is to cook up some bogus results,

what incentive is there to actually make an advance?

 What exactly is going on with these “parallel advocates?”

Are Parallel Advocates Stupid?

Many-Core!

Many seem to have

degrees from “good”

schools. They can‟t all

be stupid.

Are Parallel Advocates Corrupt?

Intentionally

fabricating results as

a way to scam money

out of the government

and investors? It

happens in science,

but this sort of fraud

would be difficult to

sustain for 50 years.

I think they‟re mostly deluded…

For over a decade, prophets have

voiced the contention that the

organization of a single computer has

reached its limits and that truly significant

advances can be made only by

interconnection of a multiplicity of

computers in such a manner as to permit

cooperative solution.

-- Gene Amdahl, 1967

Amdahl‟s Law

• The serial portion is real. Anyone who can‟t see this

is in deep denial.

• Maximizing performance hinges on MINIMIZING the

serial bottlenecks

• We can‟t expect linear speedup here; it‟s not sexy or

flashy, but it is critical to do.

• The eternal problem: it‟s easy to get a bogus linear

speedup, and has been encouraged by funding

agencies, tenure and program committees…

• Why is Amdahl‟s Law so hard to understand?

• It is difficult to get a man to understand

something when his job depends on not

understanding it – Upton Sinclair

Realistic Speedup

Deutsch & Newton, DAC 84

Jones & Schwarz, Computing Surveys „80Khundakjie, ..., Madden, IEEE Clusters 2001

Research Focus

 Critical to reduce the size of the “hard serial

bottlenecks” while keeping the computational

efficiency of the best algorithms

 Looking for solutions with broad impact, not a one-

off

 Leverage algorithms with the best computational

complexity rather than trying to reinvent the wheel

Data Structure Co-Processing

 Many of the best algorithms rely on data structures
 In particular, priority queues, trees, hash tables, and so on,

require some compute time for insert, delete, ….

 Opportunity to extract some parallelism; when inserting an item,
the main thread doesn‟t need to wait for the data structure to
reorganize

 Operations on the data structure may take tens or hundreds
of cycles
 We‟ve looked at implementations on standard multi-core; while it

works, we leave a lot on the table

 Need low-latency connection, tight integration between the
algorithm and a secondary processor

Data Structure Co-Processing

 Data structures offer a clean separation between types of
computational tasks, and offloading of work is certainly not
new

 Questions from the early part of this research:
 Is there enough potential for parallel work to offset the overhead

of synchronizing with a secondary processor

 How much of the work is “data structure,” and how much is “main
thread”

 Is it possible to get a meaningful speedup here, to chip away at
the hard serial bottlenecks?

 The integration of a data structure and it‟s algorithm can be
very tight; we need to have efficient integration.

Algorithm Test Bed

 Single source shortest path – a hard serial
bottleneck

 Bellman-Ford is out, due to computational complexity

 No apparent alternative algorithms (e.g. Delta
Stepping)

 Dijkstra‟s Algorithm

 This is the best known algorithm, and is tightly integrated
with a priority queue data structure

 If it‟s possible to extract some speedup here, it‟s likely we
can use the same trick on other tough problems

 Our experiments use a basic binary heap for illustration; the
idea applies to other types of data structures

Dijkstra‟s Algorithm

ExtractMin needs to reorganize the heap. Further, the

relax step may update the distances to some vertices

(also changing the structure of the heap). The key idea

is to move this sort of work to a secondary processor.

Evaluation Methodology

 Used M-Sim simulator

http://www.cs.binghamton.edu/~msim

 Simulated DSCP using dual-core and dual-

threaded processors

 Each core is 4-way wide with 128-entry

Reorder Buffer, 32KB I-L1 and D-L1 caches

and 512KB L2 cache

 We assumed 300 cycles memory latency

http://www.cs.binghamton.edu/~msim

Simulated Graphs

 Synthetic graphs

Sparse: 100 to 3300 nodes with the number of

edges being 2x, 4x and 6x the number of nodes

Dense: 100 to 2900 nodes with edge coverage of

15%, 45% and 75%

 Real-life graphs

Road map benchmarks from the 9th DIMACS

Implementation Challenge

 Full USA map, maps of individual states.

Dijkstra‟s Algorithm: How Much Time is

Spent Processing Heaps?

Multicore Implementation

 DSCP is performed on a separate core

Advantage: no resource competition

Disadvantage: long communication latencies,

because L1 cache is not shared

Hardware support needed to reduce cross-core

communication latencies

 Inter-core registers

Speeding Up Communication:

Inter-core Registers

Performance with Full USA

Benchmark

Warning: parallel

computing trick with

the base of the graph

being 1e+10

Results Summary

 26% performance improvement on average for

all simulated graphs with CMP

 Dense graphs are within 2% of maximum

possible improvement that would be achieved

if all data structure operations were eliminated

 For sparse graphs, significant room for further

improvements

 20% to 25% improvement on Full USA map

depending on the L2 cache size used

Wrap-Up

 Serial bottlenecks are real. Amdahl is (and will always

be) right. Anyone who tells you otherwise is some

combination of {stupid, corrupt, deluded}.

 We must redouble efforts to improve serial

performance.

 There are opportunities to chip away at hard serial

bottlenecks

 Unfortunately, not as “sexy” as the bogus results that are

grabbing attention

 It‟s hard for real improvements to compete with a parallel

fantasy world….

Fooling the Masses
Parallel Computing == Perpetual Motion

 David H. Bailey, 1991 Supercomputing Review, “Twelve

Ways to Fool the Masses when Giving Results on Parallel

Computers”

 Numbers have been cooked since the earliest days

of parallel computing

 Some of the problems are honest mistakes.

 Some of it shocking ignorance.

 Some of it is outright fraud.

 All of it is wrong, and bad for science.

 Bailey‟s DAC 2009 paper was an update (he agreed to

attend after I showed him a few EDA papers)

But can‟t parallel speed things up?
Yes, a little bit.

Charles Leiserson, DAC

2009. For quicksort, an

upper bound of about

10x speedup (for a very

large input file)

In practice, probably

much less.

He agreed to come to

DAC after I showed him

some EDA papers.

Rethinking Parallel

 We are faced with a performance problem; clock rates

have ground to a halt.

 We have an ocean of transistors available to us, but

can‟t use them to increase serial ILP

 The hypothesis: massive parallelism will be a useful

way to put those transistors to work.

 Complexity theory: the algorithm is the most

important choice.

 Work and Span laws: many of the best algorithms do

not scale, and we have serial sections of

applications.

 Amdahl‟s Law: the serial part dominates

performance.

Are We Scientists?

 There are scam artists who try to trick people in investing in

perpetual motion machines.

 Are we really any better in our community?

 Many of the “experts” publishing in top ranked conferences,

journals, books, are basing their work on things that are

factually incorrect.

 Shouldn‟t we, as scientists, reject this? And speak out

against it? Or is the funding available causing us to

compromise our principles?

 The lack of scientific rigor, and the tolerance of incorrect

facts, reflects poorly on all of us.

5-Year Prediction

 Larrabee, Cell follow-ons will also be cancelled.

 Research money and best paper awards continue to go to

those who know the least about algorithms. It‟s

advantageous for an idea to look good but not be

practical: it means endless funding for an academic.

 Continued willful blindness to the basics of computer

science

 More commercial failures, and stagnation of the industry.

There‟s only so long that we can go without making any

meaningful performance gain.

A Call to Action

 We are faced with an ocean of transistors,

and no way to run processing faster.

 Parallelism will take us only a very short

distance.

 We, as a community, must cut through the

hype, and pursue ideas other than those that

have failed for 50+ years.

 Hypothesis: massive parallel computing

will be a general-purpose way to increase

performance, and to fill next-generation

dies.

 Hypothesis: massive parallel computing

will be a general-purpose way to increase

performance, and to fill next-generation

dies.

 Hypothesis: massive parallel computing

will be a general-purpose way to increase

performance, and to fill next-generation

dies.

Computing Task

 Compute the sum of the numbers from 1

to n

sum = 0;

for (i = 1; i <= n; ++i)

sum = sum + i;
Great news! We can make this scale to thousands of processors;

we break the computation into regions (map), and then combine

(reduce)

Gotcha

 The sum from 1 to n can be computed in a

closed form: (n*(n+1))/2

 This has a serial bottleneck: the addition

must occur before the multiply

n/2

n+1

multiply

Complexity Theory

 An efficient algorithm is the MOST POWERFUL technology

available for computing. Everything else pales in

comparison.

 A must-read paper: Hartmanis & Stearns, “On the

computational complexity of algorithms,” Trans. AMS, 1965

 Parallel computers have no magic ability; they do not defy

mathematics. They do not enable time travel or perpetual

motion.

 At best, parallel can provide a constant factor improvement in run

time; for many problems, the most computationally efficient

algorithm offers only modest parallel speedup (if anything)

 Big-O complexity ignores constants for a reason: the algorithm

with the lowest complexity wins. The value of the constants are

Big-O complexity

O(n)

O(1)

As the problem size increases, the work increases for the O(n)

algorithm. No matter how much speedup we can get with parallel, the

lower complexity algorithm wins for large values of n

Time

n

Lower complexity wins on both time and total power. It also

requires no specialized hardware or compiler support.

