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Sorry to keep beating this 

drum…

Amdahl Olukotun Gustafson
ICCAD ‟07 panel

Arvind

… but this stuff is important.



It seems like only 5 years ago, 

most people thought I was 

insane….
 EDP05 talk – parallel is a recipe for disaster….



The Future of Computing



Background Reading

 http://www2.dac.com/front_end+topics.aspx?a

rticle=17&topic=1

 “Rethinking Parallel” in the Technical Articles 

section of the new DAC web site

 Massively parallel computing makes no sense 

to me.  There is small scale parallelism 

everywhere (2, 4, maybe 8 cores), but massive 

parallelism is commercially useless

http://www2.dac.com/front_end+topics.aspx?article=17&topic=1
http://www2.dac.com/front_end+topics.aspx?article=17&topic=1


Hard Serial Bottlenecks

 Interesting problems where there are no competitive 

scalable solutions (and extracting any speedup is 

difficult)

 Why do we care?  Amdahl‟s Law…  If 10% of our 

application relies on solving problems that are serial in 

nature, we get a maximum of 10X speedup.

 We can make more cores…  they‟re just useless.

 Where can we find these serial bottleneck problems?

 Surprisingly often in papers by parallel computing experts, who 

are too busy with their bold visions to see how wrong they are.



Hard Serial Bottlenecks

 Garland, DAC08: GPGPU parallel shortest paths algorithm

 Parallel Bellman-Ford: O(E * V)

 Serial Dijkstra approach: O(E + V log V)

 Serial is faster(!)

 Jamsek, ASPDAC09: GPGPU rectangle overlap for 

lithography applications

 Parallel brute force: O(n^2)

 Serial computational geometry approach: O(n log n)

 Serial is faster(!)



More Examples

 Sorting

 Lester advocates a parallel 

rank sort: O(n^2)

 Serial quicksort: O(n log n)

 Serial is faster!

 Shortest path

 Same mistake as Garland 

DAC paper

 Serial is faster!



And even more....
 Reinders TBB book (Intel), 

latest edition of CLRS text
 Parallel recursive Fibonacci:

O(2^n)
 Serial alternatives: closed form, 

or O(n) dynamic programming
 Serial is faster!

 Note: CLRS is absolutely clear 
about what a bad idea the 
parallel version is, and 
Reinders notes the “more 
efficient” approach in a side-
bar



This is a strange world

 Leading research groups are publishing material that is obviously, 

horrifically flawed

 It‟s gone through peer review, editors, program committees, and down 

the gullets of an audience one would expect to be at least a bit skeptical.

 The errors are not subtle.  They‟re right up front, in your face, and 

should be stuff that any person with an undergrad degree in computer 

science can catch.

 What kind of science are we doing?

 If all it takes to get funding or a publication is to cook up some bogus results, 

what incentive is there to actually make an advance?

 What exactly is going on with these “parallel advocates?”



Are Parallel Advocates Stupid?

Many-Core!

Many seem to have 

degrees from “good” 

schools.  They can‟t all 

be stupid.



Are Parallel Advocates Corrupt?

Intentionally 

fabricating results as 

a way to scam money 

out of the government 

and investors?  It 

happens in science, 

but this sort of fraud 

would be difficult to 

sustain for 50 years.



I think they‟re mostly deluded…

For over a decade, prophets have 

voiced the contention that the 

organization of a single computer has 

reached its limits and that truly significant 

advances can be made only by 

interconnection of a multiplicity of 

computers in such a manner as to permit 

cooperative solution.

-- Gene Amdahl, 1967



Amdahl‟s Law

• The serial portion is real.  Anyone who can‟t see this 

is in deep denial.

• Maximizing performance hinges on MINIMIZING the 

serial bottlenecks

• We can‟t expect linear speedup here; it‟s not sexy or 

flashy, but it is critical to do.

• The eternal problem: it‟s easy to get a bogus linear 

speedup, and has been encouraged by funding 

agencies, tenure and program committees…

• Why is Amdahl‟s Law so hard to understand?

• It is difficult to get a man to understand 

something when his job depends on not 

understanding it – Upton Sinclair



Realistic Speedup

Deutsch & Newton, DAC 84

Jones & Schwarz, Computing Surveys „80Khundakjie, ..., Madden, IEEE Clusters 2001



Research Focus

 Critical to reduce the size of the “hard serial 

bottlenecks” while keeping the computational 

efficiency of the best algorithms

 Looking for solutions with broad impact, not a one-

off

 Leverage algorithms with the best computational 

complexity rather than trying to reinvent the wheel



Data Structure Co-Processing

 Many of the best algorithms rely on data structures
 In particular, priority queues, trees, hash tables, and so on, 

require some compute time for insert, delete, ….

 Opportunity to extract some parallelism; when inserting an item, 
the main thread doesn‟t need to wait for the data structure to 
reorganize

 Operations on the data structure may take tens or hundreds 
of cycles
 We‟ve looked at implementations on standard multi-core; while it 

works, we leave a lot on the table

 Need low-latency connection, tight integration between the 
algorithm and a secondary processor



Data Structure Co-Processing

 Data structures offer a clean separation between types of 
computational tasks, and offloading of work is certainly not 
new

 Questions from the early part of this research:
 Is there enough potential for parallel work to offset the overhead 

of synchronizing with a secondary processor

 How much of the work is “data structure,” and how much is “main 
thread”

 Is it possible to get a meaningful speedup here, to chip away at 
the hard serial bottlenecks? 

 The integration of a data structure and it‟s algorithm can be 
very tight; we need to have efficient integration.



Algorithm Test Bed

 Single source shortest path – a hard serial 
bottleneck

 Bellman-Ford is out, due to computational complexity

 No apparent alternative algorithms (e.g. Delta 
Stepping)

 Dijkstra‟s Algorithm

 This is the best known algorithm, and is tightly integrated 
with a priority queue data structure

 If it‟s possible to extract some speedup here, it‟s likely we 
can use the same trick on other tough problems

 Our experiments use a basic binary heap for illustration; the 
idea applies to other types of data structures



Dijkstra‟s Algorithm

ExtractMin needs to reorganize the heap.  Further, the 

relax step may update the distances to some vertices 

(also changing the structure of the heap).  The key idea 

is to move this sort of work to a secondary processor.



Evaluation Methodology

 Used M-Sim simulator 

http://www.cs.binghamton.edu/~msim

 Simulated DSCP using dual-core and dual-

threaded processors

 Each core is 4-way wide with 128-entry 

Reorder Buffer, 32KB I-L1 and D-L1 caches 

and 512KB L2 cache

 We assumed 300 cycles memory latency

http://www.cs.binghamton.edu/~msim


Simulated Graphs

 Synthetic graphs

Sparse: 100 to 3300 nodes with the number of 

edges being 2x, 4x and 6x the number of nodes

Dense: 100 to 2900 nodes with edge coverage of 

15%, 45% and 75%

 Real-life graphs

Road map benchmarks from the 9th DIMACS 

Implementation Challenge

 Full USA map, maps of individual states.



Dijkstra‟s Algorithm: How Much Time is 

Spent Processing Heaps?



Multicore Implementation

 DSCP is performed on a separate core

Advantage: no resource competition

Disadvantage: long communication latencies, 

because L1 cache is not shared

Hardware support needed to reduce cross-core 

communication latencies

 Inter-core registers



Speeding Up Communication: 

Inter-core Registers



Performance with Full USA 

Benchmark

Warning: parallel 

computing trick with 

the base of the graph 

being 1e+10



Results Summary

 26% performance improvement on average for 

all simulated graphs with CMP

 Dense graphs are within 2% of maximum 

possible improvement that would be achieved 

if all data structure operations were eliminated

 For sparse graphs, significant room for further 

improvements

 20% to 25% improvement on Full USA map 

depending on the L2 cache size used



Wrap-Up

 Serial bottlenecks are real.  Amdahl is (and will always 

be) right.  Anyone who tells you otherwise is some 

combination of {stupid, corrupt, deluded}.

 We must redouble efforts to improve serial 

performance.

 There are opportunities to chip away at hard serial 

bottlenecks

 Unfortunately, not as “sexy” as the bogus results that are 

grabbing attention

 It‟s hard for real improvements to compete with a parallel 

fantasy world….



Fooling the Masses
Parallel Computing == Perpetual Motion

 David H. Bailey, 1991 Supercomputing Review, “Twelve 

Ways to Fool the Masses when Giving Results on Parallel 

Computers”

 Numbers have been cooked since the earliest days 

of parallel computing

 Some of the problems are honest mistakes.

 Some of it shocking ignorance.

 Some of it is outright fraud.

 All of it is wrong, and bad for science.

 Bailey‟s DAC 2009 paper was an update (he agreed to 

attend after I showed him a few EDA papers)



But can‟t parallel speed things up?  
Yes, a little bit.

Charles Leiserson, DAC 

2009.  For quicksort, an 

upper bound of about 

10x speedup (for a very 

large input file)

In practice, probably 

much less.

He agreed to come to 

DAC after I showed him 

some EDA papers.



Rethinking Parallel

 We are faced with a performance problem; clock rates 

have ground to a halt.

 We have an ocean of transistors available to us, but 

can‟t use them to increase serial ILP

 The hypothesis: massive parallelism will be a useful 

way to put those transistors to work.

 Complexity theory: the algorithm is the most 

important choice.

 Work and Span laws: many of the best algorithms do 

not scale, and we have serial sections of 

applications.

 Amdahl‟s Law: the serial part dominates 

performance.



Are We Scientists?

 There are scam artists who try to trick people in investing in 

perpetual motion machines.

 Are we really any better in our community?

 Many of the “experts” publishing in top ranked conferences, 

journals, books, are basing their work on things that are 

factually incorrect.

 Shouldn‟t we, as scientists, reject this?  And speak out 

against it?  Or is the funding available causing us to 

compromise our principles?

 The lack of scientific rigor, and the tolerance of incorrect 

facts, reflects poorly on all of us.



5-Year Prediction

 Larrabee, Cell follow-ons will also be cancelled.

 Research money and best paper awards continue to go to 

those who know the least about algorithms.  It‟s 

advantageous for an idea to look good but not be 

practical: it means endless funding for an academic.

 Continued willful blindness to the basics of computer 

science

 More commercial failures, and stagnation of the industry.  

There‟s only so long that we can go without making any 

meaningful performance gain.



A Call to Action

 We are faced with an ocean of transistors, 

and no way to run processing faster.

 Parallelism will take us only a very short 

distance.

 We, as a community, must cut through the 

hype, and pursue ideas other than those that 

have failed for 50+ years.



 Hypothesis: massive parallel computing 

will be a general-purpose way to increase 

performance, and to fill next-generation 

dies.
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 Hypothesis: massive parallel computing 
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dies.



Computing Task

 Compute the sum of the numbers from 1 

to n

sum = 0;

for (i = 1; i <= n; ++i)

sum = sum + i;
Great news!  We can make this scale to thousands of processors; 

we break the computation into regions (map), and then combine 

(reduce)



Gotcha

 The sum from 1 to n can be computed in a 

closed form: (n*(n+1))/2

 This has a serial bottleneck: the addition 

must occur before the multiply

n/2

n+1

multiply



Complexity Theory

 An efficient algorithm is the MOST POWERFUL technology 

available for computing.  Everything else pales in 

comparison. 

 A must-read paper: Hartmanis & Stearns, “On the 

computational complexity of algorithms,” Trans. AMS, 1965 

 Parallel computers have no magic ability; they do not defy 

mathematics.  They do not enable time travel or perpetual 

motion.

 At best, parallel can provide a constant factor improvement in run 

time; for many problems, the most computationally efficient 

algorithm offers only modest parallel speedup (if anything)

 Big-O complexity ignores constants for a reason: the algorithm 

with the lowest complexity wins.  The value of the constants are 



Big-O complexity

O(n)

O(1)

As the problem size increases, the work increases for the O(n) 

algorithm.  No matter how much speedup we can get with parallel, the 

lower complexity algorithm wins for large values of n

Time

n

Lower complexity wins on both time and total power.  It also 

requires no specialized hardware or compiler support.


