
Challenges and
Opportunities of ESL
Design Automation

Zhiru Zhang*, Deming Chen+

*AutoESL Design Technologies, Inc.

+ECE/University of Illinois, Urbana-Champaign

2

Outline

• Introduction

• Opportunities and Challenges

• Modeling

• Synthesis and Optimization

– Advanced Memory Synthesis

– Effective Power Analysis and Optimization

– Variation-Aware High-Level Synthesis

• Conclusions

Introduction
• The rapid increase of design complexity urges the design

community to raise the level of abstraction beyond RTL.

• Electronic system-level (ESL) design automation has
been widely identified as the next productivity boost for
the semiconductor industry.

• High-level synthesis (HLS) is a key cornerstone of ESL
design automation.

• However, the transition to ESL design will not be as well
accepted as the transition to RTL in the early 1990s
unless
– robust analysis and synthesis technologies can be built to

produce high-quality architectures
– highly optimized implementations can be automatically

generated

Opportunities

• ESL models and tools offer
– early embedded software development

– architecture modeling

– design space exploration

– rapid prototyping

• HLS fits in nicely for architecture exploration and rapid
prototyping
– early performance/area/power estimations & analyses

– allows system architects explore different architectures
efficiently

– automated flows to map to an FPGA-based system for system
emulation, functional validation and real-time debugging

Challenges - Modeling

• Most efficient virtual platform modeling may not be fully
synthesizable

• How to maintain a single synthesizable model as the golden reference
for both simulation and synthesis?

Reference code for

simulation

Manual conversion and

restructuring

Synthesizable code

= ?

l Software centric

l Optimized for

simulation

l HW centric

l Optimized for

implementation

Challenges - Analysis and
Optimization (1)

• Efficient support of the memory hierarchy and memory
optimization
– limited memory ports often become the performance bottleneck
– oversized memory blocks would create wiring detours and

routability problem

• Accurate high-level power and performance analysis
– sophisticated activity propagation
– clock tree with clock gating
– multi-voltage islands, dynamic voltage frequency scaling, and

power gating
– low-level physical implementations
– interconnect

Challenges - Analysis and
Optimization (2)

• Effective power and performance optimization
– large design space
– most of the problems are NP-hard
– scheduling, binding and resource allocation are

interdependent
– parallelism extraction
– quality convergence of layout-driven synthesis

• Process variation
– variation modeling at high level
– yield analysis and optimization

Challenges - Others

• HLS for reliability

• HLS for thermal optimization

• ECO

• Verification

• IP integration

• …

Modeling – Dynamic Behavior and
Standardization

• The synthesis tool shall continue to improve to handle a
broader class of language constructs.
– support dynamic behaviors in certain restricted forms.
– extract the static binding and connectivity from the seemingly

dynamic specifications.
– extend and enhance the predominant static analysis methods.

• The design community and synthesis tool providers shall
converge to a standard synthesizable subset.
– On top of the standard, industry and academia shall collaborate

to make available a set of reusable templates and libraries as
references for efficient synthesis of common design patterns.

– The reference templates and libraries should be relatively
efficient in execution time and memory footprint.

Modeling - Separation of Functionality and
Constraints

void DUT(int in[N], int out[N])
{ … }

10

set_interface –type stream –port {in out}

set_interface –type memory –port {in out}

DUT

R
E
A
D

QIN DOUT

READ WRITE

W
R
I
T
E

out0
out1
out2
out3
…

in0
in1
in2
in3
…

Addr Addr

RAM RAM

FULL

DUT

R
E
A
D

EMPTY

DIN DOUT

READ WRITE

W
R
I
T
E

in0in1 out0out1

stream stream

10

• Synthesize hardware
details from target-
neutral source code

– Golden functional spec
for reuse

– Technology/platform-
dependent RTLs

– Synthesis influenced by
separated constraints &
directives

Source code (What)

Constraint/directive (How)

Advanced Memory Synthesis

• On-chip memory partitioning for throughput
optimization [Cong, et al., ICCAD’09]

• Support of efficient memory hierarchies
including automatic caching and prefetching
[Putnam, et al. ISCA’09]

• Communication overlapping with computation

• Efficient access to external memories shared by
the host processor and accelerator

A Case Study: Loop Pipelining

• Computation kernels are
captured by perfect loop
nests

• Loop pipelining allows a new
iteration to begin processing
before the previous iteration
completes

– Initiation interval (II) : number
of time steps before the next
iteration begin processing

– Performance limitation
• Loop carried dependence
• Resource constraints

for (i = 2; i < N; i++)

sum += A[i] + A[i-1] + A[i-2];

Pipelining with II=1 is infeasible

using a dual-port memory

LD +LD LD + +
LD +LD LD + +

LD +LD LD + +

Courtesy: [Cong, et al., ICCAD’09]

Motivation Example

0 1 0 1 0 1 0 1 0 10 1

Iteration i

0 1 0 1 0 1 0 1 0 10 1

K[i]

K[i+5]

(b)

Iteration i+1

K[i]

K[i+5]

0 1 0 1 0 1 0 1 0 10 1

0 1 0 1 0 1 0 1 0 10 1

Iteration i

0 1 0 1 0 1 0 1 0 10 1

K[i] K[i+5]

(a)

Iteration i+1

K[i] K[i+5]

Scheduling can affect

memory partitioning

Courtesy: [Cong, et al., ICCAD’09]

Generates optimal memory

partitioning solutions integrated

with scheduling problem

Experimental Results
(Throughput)

Platform: xilinx Virtex-4 FPGA

Original

II

AMP

II

Original

 Slices

AMP

Slices
COMP

fir 3 1 241 510 2.12

idct 4 1 354 359 1.01

litho 16 1 1220 2066 1.69

matmul 4 1 211 406 1.92

motionEst 5 1 832 961 1.16

palindrome 2 1 84 65 0.77

avg 5.67x 1.45

Average 6x performance improvement with 45% area overhead

Courtesy: [Cong, et al., ICCAD’09]

Effective Power Analysis and
Optimization

• Three case studies

– FPGA power estimation and optimization
[Chen, et al., ASPDAC’07]

– Scheduling with Soft Constraints, [Cong, et
al., ICCAD’09]

– Variation-Aware, Layout Driven HLS for
Performance Yield Optimization [Lucas, et al.,
ASPDAC’09]

Case 1: Area Characterization

Operation Resource Usage

Add/Subtract LE N

Bitwise and/or/xor LE N

Compare (,,) LE round(0.67*N+0.62)

Shift (with variable
shift distance)

LE round(0.045*N2+3.76*N–8.22)

Multiply DSP9x9
N 18: N/9
N 36: N/18

Multiplexer LE N*round(0.67*K)

N and K represent the bitwidth and the number of input operands, respectively.

FPGA power estimation relies on area characterization

Target Altera Stratix FPGAs in this work

Delay Characterization

Operation Delay (ns)

Add/Subtract 0.024*N+1.83

Bitwise and/or/xor < 2

Compare (,,) 0.014*N+2.14

Shift (with variable shift
distance)

4.3*10-5*N3–5*10-3*N2+0.24*N+0.93

Multiply
N 9: 3.05
N 18: 3.83
N 36: 7.69

Multiplexer (8-to-1) 9.8*10-5*N3–7.4*10-3*N2+0.2*N+1.07

Delay characterization to study power/delay tradeoff

Design Space Exploration

1

2 3 4

5

Node 2: (1) (2) two mul
(1, 2) one mul

Node 3: (1) (2) (3) three mul
(1, 2) (3) two mul
(1, 3) (2) two mul

Node 4: (1) (2) (3) (4)
(1, 2, 4) (3)
(1, 2) (3, 4)
(1, 2) (3) (4)
(1, 3, 4) (2)
(1, 3) (2, 4)
(1, 3) (2) (4)

….

power

delay

pruned

MUL MUL

Datapath for
solution (1, 2, 4) (3)

registers

MUXes

Power and Performance Comparison

Power & Fmax Comparison

1 0.97

0.68

1 0.99

1.16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lmXRLF lmXRLF-Power xPlore-Power

Various Algorithms

R
a

ti
o

Power Fmax

Case 2: Operation Gating

• Schedule to maximize the gating/shutdown opportunities.

• Use constraints to enforce node orders?

20

int module(int A, int B)
{

int B2 = B * B;
bool c = A > 0;
int r = c ? A : B2;
return r;

}

A B

>

×

Slack Optimization

Cycle time 7ns

Latency budget 2 cycles

+

×

+

2ns

3ns

2ns

× 3ns

+ 2ns

× 3ns

+ 2ns

× 3ns

• Slack within a clock
cycle is desirable.

• Add a constraint to
separate nodes when
slack is too small?

– What if latency
constraint is very
tight?

21

Comparison on Power

Our approach provides

• 33.9% power reduction compared to baseline on average

• 17.1% power reduction compared to Chen’s method on average

• Close result to the ILP method

22

Case 3: Process Variation
and Its Effect

• Process variation increases as device and interconnect feature sizes
are scaled down
– 30% performance variation and 5X leakage variation

• Traditional guard-banding uses pessimistic worst-case process
corners
– Inefficient as the variability increases with scaling

(Source: Intel)

FastYield Algorithm Overview
Scheduled CDFG

Initial Register Allocation

and Binding

SSTA Driven

Floorplanner

Rebinding

Improvement?

Yes

No Bound

Benchmark

Timing Driven Floorplanner

• Modified version of the simulated annealing based Parquet
floorplanner

• A statistical timing analysis is performed after 5 SA moves
– Minimize the sum of the mean and standard deviation

• Cost function:

• PCA based SSTA
– Interconnects modeled as 2 pin nets with Manhattan distance length.

– Unit correlation model

bestbest

zz
R

nnnzz

T

regregregNZ

+

+

)),(),...,,(),,(max(),(~ 222111

RTareaCost *+*

Unit Correlation Model

• Correlation is based on
the distance between
the unit centerpoints

• Matches high level unit
characterization

• Correlation matrix used
in PCA SSTA with σinter

add

mult

regmult reg

Sample floorplan

One benchmark - chem

• Improvement of FastYield comes from two factors:
– the mean of the pdf has been shifted to a lower clock value.
– the variance has been reduced.

• A significant PY jump for a relatively minor change in the mean
clock period

FastYield Results

BindBWM
FastYield

Initial

FastYield

Rebind
Comparison

Bench

mark

85%

Yield

Clk

(ns)

PY at FY

Rebind

85%

Clk (%)

85%

Yield

Clk

(ns)

PY at FY

Rebind

85%

Clk (%)

85%

Yield

Clk

(ns)

Total

FY Run

Time

(min)

FY Rebind

reduction in

Clk over

BindBWM

(%)

FY Rebind

85% PY

Gain over

BindBWM

(%)

FY Rebind

reduction

in Clk over

FY Initial

(%)

FY Rebind

85% PY

Gain over

FY Initial

(%)

chem 6.9 12.5 6.1 67.7 6.0 75 14.17 72.5 2.35 17.3

dir 5.8 1.5 4.9 70.9 4.8 43 16.71 83.5 1.76 14.1

honda 5.7 8.1 4.9 82.6 4.9 28 14.39 76.9 0.32 2.4

mcm 4.9 11.4 4.3 78.0 4.2 40 14.57 73.6 3.34 7.0

pr 5.2 0.1 4.5 70.1 4.3 24 16.47 84.9 3.04 14.9

steam 6.2 7.6 5.5 76.3 5.5 64 11.88 77.4 1.14 8.7

wang 5.3 1.6 4.7 80.8 4.6 16 13.29 83.4 0.95 4.2

Avg. 14.50 78.9 1.84 9.8

29

Conclusions

• This paper identified a set of critical needs and
key challenges in ESL design automation with
special focus on HLS

– software-centric ESL modeling

– optimizations of memory hierarchy and access

– power and performance analysis and optimization

– process variation-aware HLS

• These needs and challenges have created many
new and important research directions as well as
business opportunities in the EDA community

Acknowledgement

• Students at UIUC and UCLA

• Researchers at AutoESL

• Various funding agencies

– NSF, SRC, GSRC, Altera, Intel, Magma, Xilinx

Thank You

31

