Challenges and
Opportunities of ESL
Design Automation

Zhiru Zhang*, Deming Chen*

*AutoESL Design Technologies, Inc.
+ECE/University of Illinois, Urbana-Champaign

AutoESL

E S E:*ngrfguil;ig

CA D Systems

Outline

e Introduction
e Opportunities and Challenges
e Modeling

e Synthesis and Optimization
— Advanced Memory Synthesis
— Effective Power Analysis and Optimization
— Variation-Aware High-Level Synthesis

e Conclusions

-
Introduction

e The rapid increase of design complexity urges the design
community to raise the level of abstraction beyond RTL.

e Electronic system-level (ESL) design automation has
been widely identified as the next productivity boost for
the semiconductor industry.

e High-level synthesis (HLS) is a key cornerstone of ESL
design automation.

e However, the transition to ESL design will not be as well
accl:epted as the transition to RTL in the early 1990s
unless

— robust analysis and synthesis technologies can be built to
produce high-quality architectures

— highly optimized implementations can be automatically
generated

_—
Opportunities

e ESL models and tools offer
— early embedded software development
— architecture modeling
— design space exploration
— rapid prototyping

e HLS fits in nicely for architecture exploration and rapid
prototyping
— early performance/area/power estimations & analyses

— allows system architects explore different architectures
efficiently

— automated flows to map to an FPGA-based system for system
emulation, functional validation and real-time debugging

Challenges - Modeling

Most efficient virtual platform modeling may not be fully
synthesizable

How to maintain a single synthesizable model as the golden reference
for both simulation and synthesis?

e Software centric
e Optimized for
simulation

Manual conversion and
restructuring

e HW centric

l !
/
/
e Optimized for Il
implementation B

Challenges - Analysis and
Optimization (1)

e Efficient support of the memory hierarchy and memory
optimization
— limited memory ports often become the performance bottleneck

— oversized memory blocks would create wiring detours and
routability problem

e Accurate high-level power and performance analysis
— sophisticated activity propagation
— clock tree with clock gating

— multi-voltage islands, dynamic voltage frequency scaling, and
power gating

— low-level physical implementations
— interconnect

Challenges - Analysis and
Optimization (2)

o Effective power and performance optimization
— large design space
— most of the problems are NP-hard

— scheduling, binding and resource allocation are
interdependent

— parallelism extraction
— quality convergence of layout-driven synthesis

e Process variation
— variation modeling at high level
— vield analysis and optimization

———
Challenges - Others

e HLS for reliability

e HLS for thermal optimization
e ECO

o Verification

e IP integration

Modeling — Dynamic Behavior and
Standardization

e The synthesis tool shall continue to improve to handle a
broader class of language constructs.
— support dynamic behaviors in certain restricted forms.

— extract the static binding and connectivity from the seemingly
dynamic specifications.

— extend and enhance the predominant static analysis methods.

e The design community and synthesis tool providers shall
converge to a standard synthesizable subset.

— On top of the standard, industry and academia shall collaborate
to make available a set of reusable templates and libraries as
references for efficient synthesis of common design patterns.

— The reference templates and libraries should be relatively
efficient in execution time and memory footprint.

Modeling - Separation of Functionality and

Constraints
Source code (What)

e Synthesize hardware void DUT(int in[N], int out[N])
details from target- L

Constraint/directive (How)
neutral source code

— Golden functional spec
for reuse

— Technology/platform-
dependent RTLs

— Synthesis influenced by
separated constraints &
directives

set_interface -type memory -port {in out}

in1 in0

stream

s oua

stream

————
Advanced Memory Synthesis

e On-chip memory partitioning for throughput
optimization [Cong, et al., ICCAD'09]

e Support of efficient memory hierarchies
including automatic caching and prefetching
[Putnam, et al. ISCA’09]

e Communication overlapping with computation

o Efficient access to external memories shared by
the host processor and accelerator

_—
A Case Study: Loop Pipelining

e Computation kernels are

for (i=2;i <N; i++)
captured by perfect loop sum += Ali] + A[i-1] + A[i-2]:
nests
e Loop pipelining allows a new
iteration to begin processing =L tﬁ? :~D: s
: : : D LDILD| - | ¢ | &
Eg;‘rcl)lgleegs previous iteration LofolLo]+ [+
— Initiation interval (II) : number
of time steps before the next Pipelining with lI=1 is infeasible

iteration begin processing using a dual-port memory

— Performance limitation
e Loop carried dependence
e Resource constraints

Courtesy: [Cong, et al., ICCAD’09]

Motivation Example

Iteration i Iteration i+1

Iteration i Iteration i+1

0/1/0/1(0(1({0(1]|0]|1]|0]|1

............... 01010100101

o[1Jof1]of1]o]1 M 1]0]1

_ Generates optimal memory
Scheduling can affect mm) partitioning solutions integrated
memory partitioning with scheduling problem

Courtesy: [Cong, et al., ICCAD’09]

= !xper!men!al !esul!s

(Throughput)
Platform: xilinx Virtex-4 FPGA

Original AMP Original AMP COMP
II II Slices |[Slices

fir 3 1 241 510 2.12
idct 4 1 354 359| 1.01
litho 16 1 1220 2066| 1.69
matmul 4 1 211 406| 1.92
motionEst 5 1 832 961| 1.16
pal indrome 2 1 84 6b| 0.77
avg 5.67x 1.45

Average 6x performance improvement with 45% area overhead

Courtesy: [Cong, et al., ICCAD’09]

Effective Power Analysis and
Optimization

e Three case studies

— FPGA power estimation and optimization
[Chen, et al., ASPDAC'07]

— Scheduling with Soft Constraints, [Cong, et
al., ICCAD'09]

— Variation-Aware, Layout Driven HLS for
Performance Yield Optimization [Lucas, et al.,
ASPDAC'09]

Case 1: Area Characterization

FPGA power estimation relies on area characterization

Operation Resource Usage
Add/Subtract LE N
Bitwise and/or/xor LE N
Compare (=, >, >) LE round0.67* N+0.62)
Shift (with variable % "
shift distance) LE round(0.045 *\2+3.76* N-8.22)
. N<18:TNV9]
Multiply DSP9x9 N<36:[A/18]
Multiplexer LE N round0.67*K)

N and K represent the bitwidth and the number of input operands, respectively.

Target Altera Stratix FPGAs in this work

Delay Characterization

Delay characterization to study power/delay tradeoff

Operation Delay (15s)
Add/Subtract 0.024*N+1.83
Bitwise and/or/xor <?2
Compare (=, >, >) 0.014*N+2.14
Shift (with variable Shift | 4 3.4 0-5%As_5%10-3% 12.4.0.24%A4+0.93
distance)
N<9: 3.05
Multiply N<18: 3.83
N < 36: 7.69
Multiplexer (8-to-1) 0.8*10°*NB-7.4*103* \2+0.2*N+1.07

Design Space Exploration

Node 2: (1) (2) two mul
(1, 2) one mul

. =

Node 3: (1) (2) (3) three mul
(1, 2) (3) two mul
(1, 3)(2) two mul

5 B i I s [ol s

Node 4: (1) (2) (3) (4) vV —
(1,2, 4) (3) - g pruned
(11 2) (3I 4) — © ’:‘—-.:" °

(1,2)(3)(4) MUXes MUL e s

(1, 3, 4) (2) ﬁ ﬁ - ° .

(11 3) (21 4) B
(1, 3) (2) (4)

registers

Vv

Datapath for
solution (1, 2, 4) (3)

Power and Performance Comparison

Ratio

1.4

1.2

0.8

0.6

0.4

0.2

Power & Fmax Comparison

O Powerl Fmax

1.16

ImXRLF

0.97 0.99

0.68

ImXRLF-Power
Various Algorithms

xPlore-Power

Case 2: Operation Gating

int module(int A, int B) A B
{
int B2 = B * B;
bool ¢ = A > 0;
int r=c ? A : B2;
return r;
}
A r—
B B

e Schedule to maximize the gating/shutdown opportunities.
e Use constraints to enforce node orders?

2ns) 2ns e Slack within a clock
- cycle is desirable.
s3ns ® Add a constraint to
G 2ns separate nodes when
T ; 3ns o A Zns slack is too small?
—What if latency
constraint is very
3ns tight?
Cycle time /ns

Latency budget 2 cycles

Comparison on Power

10 -
8 -
g _ m Baseline
5 - .Chen
4 -
g II & ILP
1 h.._
0 -

addr BoxMuller dfmul MotlonComp MotionEst

Our approach provides
- 33.9% power reduction compared to baseline on average

- 17.1% power reduction compared to Chen’s method on average
* Close result to the ILP method

Case 3: Process Variation
and Its Effect

e Process variation increases as device and interconnect feature sizes
are scaled down
— 30% performance variation and 5X leakage variation
e Traditional guard-banding uses pessimistic worst-case process
corners
— Inefficient as the variability increases with scaling

14
(Source: Intel)
1.3 i ‘ Y (B o 9] o .:‘: .:‘ A o ! = ‘ L
‘ Oog O Source: IBM
g 1.2
g ey w
S 30% 130nm 2 ”
S ~1000 samples E
2| =
. =}
E i <
S 2 cag e
Z 1.0 = '.\
< 5x > — o
0.9 [T T Y T GO VS O (ALY (R, (Y [EUY PN (RS (e Y (RN S O | 250nm 180nm 430nm 90nm E5Snm 45nm
1 2 3 4 5

Norm. Leakage (Isb) Technology Nodes

————
FastYield Algorithm Overview
Scheduled CDFG

Initial Register Allocation
and Binding

SSTA Driven
Floorplanner

Bound

Improvement?
D Benchmark

Rebinding

Timing Driven Floorplanner

e Modified version of the simulated annealing based Parquet

floorplanner
o A statistical timing analysis is performed after 5 SA moves

— Minimize the sum of the mean and standard deviation

e Cost function:
Z ~ N(u,,0,)=max(reg,(s4,0,),red,(1,,0,),....reg, (u,,0,))

H, +0,
:ubest + Gbest

Cost =a*area+ f*T,

e PCA based SSTA

— Interconnects modeled as 2 pin nets with Manhattan distance length.
— Unit correlation model

T; =

-
Unit Correlation Model

e Correlation is based on
the distance between
the unit centerpoints

e Matches high level unit

characterization
ml ;
 Correlation matrix used "~ lLomcs i,
in PCA SSTA with Oj ., T om e
: : u31| -
Sample floorplan | [\ 1]| L

One benchmark - chem

-~
/
0.9 's_&ﬁE ________ /7 == BindBWM
0.8F T & === Fast¥ield Initial Binding
| 7% PY Difference : == [ast¥ield Rebinding
i I
- 0¥ ___ ;
o ;
> 067 0.1 ns.Ck
L) \ -
% 0.5 lefe;ence o
£ i '
o 04 ; o
5 ; e 1
0 0.3 ; a]
2 05
0.2r
0.1 55 6 &5 7 75
Clock Period (ns)
v | | | | |
5.5 B 6.5 7 7.5 8

Clock Period (ns)

e Improvement of FastYield comes from two factors:
— the mean of the pdf has been shifted to a lower clock value.

— the variance has been reduced.

e A significant PY jump for a relatively minor change in the mean

clock period

FastYield Results

BindBWM Fj:itYizld F;Segﬂd Comparison

FY Rebind FY Rebind FY Rebind | FY Rebind
Bench | Yicd | Rebind | Vidd | Rebind | Vied | Py Run | "iCtonin | ESAPY | ceducion | 5% PY
mark (CnlSl; le‘(’f;o) (Cnlsk) (:1?15(5((){;0) ((fllsk) (Tn‘l‘::l‘; Bin?;i)\XIM Binc(lol/So;WM FY({;:;tial FY({;:;tial
chem | 69| 125 | 61 | 6727 | 60 | 75 14.17 72.5 2.35 17.3
dir | 58| 15 | 49 | 709 | 48 | 43 16.71 83.5 1.76 14.1
honda | 5.7 | 81 | 49 | 826 | 49 | 28 14.39 76.9 0.32 2.4
mem | 49 | 114 | 43 | 780 | 42 | 40 14.57 73.6 3.34 7.0
pr | 52| 01 | 45 | 701 | 43 | 24 16.47 84.9 3.04 14.9
steam | 62| 76 | 55 | 763 | 55 | 64 11.88 77.4 1.14 8.7
wang | 53| 16 | 47 | 808 | 46 | 16 13.29 83.4 0.95 4.2
Avg. 14.50 78.9 1.84 9.8

—_— s
Conclusions

e This paper identified a set of critical needs and
key challenges in ESL design automation with
special focus on HLS

— software-centric ESL modeling
— optimizations of memory hierarchy and access

— power and performance analysis and optimization
— process variation-aware HLS

e These needs and challenges have created many
new and important research directions as well as
business opportunities in the EDA community

Acknowledgement

e Students at UIUC and UCLA
e Researchers at AutoESL

e Various funding agencies
— NSF, SRC, GSRC, Altera, Intel, Magma, Xilinx

- -
Thank You

