
University of California, San Diego R Gupta April 2010

High-Level Design:

(Yet) Another Look

Rajesh Gupta

Department of Computer Science and Engineering,

University of California, San Diego

Sudipta Kundu and Sorin Lerner

University of California, San Diego R Gupta April 2010

Cost of Design

EDPS 2008

Coming back to

EDPS!

University of California, San Diego R Gupta April 2010

Points I want to make today

 Inexorable move to the high-level

Verification must lead the way

Hardware formals need to be tempered

by software pragmatists

We are making progress in HLV.

University of California, San Diego R Gupta April 2010

…

Application Specific

Integrated Circuit (ASIC)

Logic Synthesis

Timing ECO

Layout

High-Level Design

4

C
o

n
tr

o
ll

e
r

Data path

Verilog, VHDL

⟨1K – 100K lines⟩

Register Transfer

Level Design (RTL)

….

x = a * b;

c = a < b;

if (c) then

a = b – x;

else

a = b + x;

a = a + x;

b = b * x;

….

C/C++, SystemC

⟨100 – 10K lines⟩
Algorithmic Design

High-Level

Synthesis

 Challenge:
 Cope with the growing

size and heterogeneity.

⇒ Writing RTL designs
more complex, tedious,
and error-prone.

University of California, San Diego R Gupta April 2010

HLD = HLS + HLV ?

 User accessibility vs. Quality of Results (QOR)
 Synthesis goal: reduce designer effort within

acceptable QOR

 Verification goal: increased effort acceptable for high
QOR

 HLS: compiler?, PL?
 In reality, it is a verification problem

 Checking product isn’t easy: state explosion in MC, path
explosion in stateless MC, specification & solver challenges
in implicit/symbolic state checkers (BMC)…

 Step back and look at the problem again…
 Verify both design process and product together.

 Pay attention to modularity (even at the cost of
QOR).

University of California, San Diego R Gupta April 2010

Our recent work in the area: 4 tools

6

High-level Design

High-Level

Synthesis

Register Transfer

Level Design (RTL)

Equivalence

Checker

Property

Checker

Property

 Explore various scalable and automatic techniques for
high-level verification.

 Execution-based Model

Checking. (DAC08)

 Bounded Model Checking.

(SPIN09)

 Translation

Validation

(ICCAD07, CAV08)

 Parameterized

Equivalence

Checking (PLDI 09)
 Benefits

 Find bugs early in the

design phase.

 Guarantee that the

properties checked hold in

the RTL design.

University of California, San Diego R Gupta, April 2010

 Once and for all

 HLS tool always
produce correct
results

 For each translation

 Does not guarantee
⇒ HLS tool is bug
free

Checker

Transformations

Check the tool or the product.

7

Translation Validation (TV)

Does guarantee
⇒ any errors in translation

will be caught when tool runs

Is the Specification “equivalent” to the Implementation?

Input

Program

(Specification)

Transformed

Program

(Implementation)

Equivalence

Checker

University of California, San Diego R Gupta, April 2010

 Parallelizing High-Level Synthesis: SPARK

 Widely used: 4,000 downloads, over 100 active users.

 Moderately large software: around 125, 000 LoC.

8

Close the loop: TV in HLS

Speculative Code Motions

+

+
If Node

T F
Reverse

Speculation

Conditional

Speculation

Speculation

Across Hierarchical

Blocks

_

a

b

c

Operation Movement to reduce impact of

Programming Style on Quality of HLS Results

Early Condition

Execution

Evaluates conditions

As soon as possible

Increasing the scope of Code Motions

by Inserting New Scheduling Steps

If Node

T F

_
e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_
c

_
d

If Node

T F

_
e

BB 0

BB 2BB 1

BB 3

BB 4

+ a

+ b

_
c

_
d

S0

S1

S2

S3

+Resource Constraints

Unbalanced

Conditional

If Node

T F

_
e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_
c

_
d

Inserting New Scheduling Steps

If Node

T F

_
e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_
c

_
d

If Node

T F

_
e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_
c

_
d

Enables Conditional Speculation

If Node

T F

e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_
c

_
d

_ _
e

S0

S1

S2

 Insert scheduling steps into shorter conditional branch

 Enables further code compaction

New Opportunities for “Dynamic” CSE

Due to Code Motions

BB 2 BB 3

BB 1

a = b + c

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

Speculate

BB 2 BB 3

BB 1

a = dcse

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

dcse = b + c BB 0BB 0

New Opportunities for “Dynamic” CSE

Due to Code Motions

BB 2 BB 3

BB 1

a = b + c

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

Speculate

BB 2 BB 3

BB 1

a = dcse

BB 6 BB 7

BB 5

d = dcse

BB 4

BB 8

dcse = b + c BB 0BB 0

Speculative Code Motions employed during Scheduling

enable new “Dynamic” opportunities for CSE

University of California, San Diego R Gupta, April 201015

An Example of HLS

Original Program:Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:

i5: sum = sum + k

i4: k = k + 1

i2: k = p

i1: sum = 0

a1

a0

i3: (k < 10) i6: ¬ (k < 10)
a2

a3

a4

a5

a6

i7: return sum
10

sum = ∑ k
p+1

University of California, San Diego R Gupta, April 201016

An Example of HLS

i2: k = p

i1: sum = 0

a1

a0

Loop Pipelining:

t = k + 1

i5: sum = sum + k

Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:

i4: k = k + 1

i3: (k < 10) i6: ¬ (k < 10)
a2

a3

a4

a5

a6

i7: return sum

i2: k = p

i1: sum = 0

a1

a0

t = k + 1

i4: k = t

University of California, San Diego R Gupta, April 201017

An Example of HLS

Copy Propagation:

t = k + 1

i5: sum = sum + ki5: sum = sum + t

t = p + 1

Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:
i3: (k < 10) i6: ¬ (k < 10)

a2

a3

a4

a5

a6

i7: return sum

i2: k = p

i1: sum = 0

a1

a0

t = k + 1

i4: k = t

t = t + 1

University of California, San Diego R Gupta, April 201018

An Example of HLS

a0

i1: sum = 0

i2: k = p

i41: t = p + 1

Scheduling:Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:

t = p + 1

i2: k = p

i1: sum = 0

a1

a0

a2i3: (k < 10) i6: ¬ (k < 10)

a5

a6

i7: return sum

a3

i4: k = t

i5: sum = sum + t

a4

t = t + 1

i4: k = t

i5: sum = sum + t

i42: t = t + 1

Read After Write

dependency

University of California, San Diego R Gupta, April 201019

An Example of HLS

Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

b0

j1: sum = 0

j2: k = p

j41: t = p + 1

b1j3: (k < 10) j6: ¬ (k < 10)

b3

b4

j7: return sum

b2

j4: k = t

j5: sum = sum + t

j42: t = t + 1

Implementation:

≡

Re-labeled

University of California, San Diego R Gupta, April 2010

 Specification ≡ Implementation
=> They have the same set of execution
sequences of visible instructions.

 Visible instructions are:
 Function call and return statements.

 Two function calls are equivalent if the state
of globals and the arguments are the same.

 Two returns are equivalent if the state of the
globals and the returned values are the
same.

20

Definition of Equivalence

University of California, San Diego R Gupta, April 2010

Split program state space in two parts:
 control flow state, which is finite.

⇒ explored by traversing the CFGs.

 dataflow state, which may be infinite.

⇒ explored using Automated Theorem

Prover.

21

Our Approach

University of California, San Diego R Gupta, April 201022

Our Approach

ps = pi

ks = ki Λ sums = sumi

Λ (ks + 1) = ti

sums = sumi

i2: k = p

i1: sum = 0

i3: (k < 10)
i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

b1

b2

b3

b4

b0

j1: sum = 0

j2: k = p

j41: t = p + 1

j4: k = t

j5: sum = sum + t

j42: t = t + 1

j7: return sum

j6: ¬ (k < 10)j3: (k < 10)

Specification Implementation

Invariant over the states of the two programs

(l1, l2) 1st Pass 2nd Pass

1. (a0, b0) ps = pi ps = pi

2. (a2, b1) ks = ki ks = ki Λ sums = sumi Λ (ks + 1) = ti

3. (a5, b3) sums = sumi sums = sumi

University of California, San Diego R Gupta, April 2010

 Two step approach.

 Generate Constraints: traverses the CFGs

simultaneously and generates the constraints

required for the visible instructions to be matched.

 Solve Constraints: solves the constraints using a

fixpoint algorithm.

 For loops: iterate to a fixed point.

 May not terminate in general.

 However, for all the benchmarks of SPARK that we

ran our algorithm terminates.

23

Translation Validation Algorithm

University of California, San Diego Sudipta Kundu

SPARK: Parallelizing HLS Framework

26

Binding

Intermediate

Representation (IR)

Scheduled IR

SPARK : HLS Framework

No Pointer
No Recursion
No goto

….

x = a * b;

c = a < b;

if (c) then

a = b – x;

else

a = b + x;

a = a + x;

b = b * x;

….

C Program

RTL

Equivalence

Checker

Pre-Synthesis

Optimization
Allocation Scheduling

Transformations: Code Motion, CSE, IVA, Copy

Propagation, Dead Code Elimination, Percolation,

Trailblazing, Chaining Across conditions, dynamic CSE.

Heuristics: HTG Scheduling Walker, Candidate Op

Walker, Get Available Ops, Loop Pipelining

University of California, San Diego R Gupta, April 2010

Benchmarks
No. of simulation

relation entries

No. of calls to

theorem prover

Time

(secs)

1. incrementer 6 9 00.5

2. integer-sum 6 20 00.8

3. array-sum 6 24 00.8

4. diffeq 7 41 01.6

5. waka 11 79 02.6

6. pipelining 12 75 02.3

7. rotor 14 71 02.5

8. parker 26 281 05.2

9. s2r 27 570 26.7

10. findmin8 29 787 14.8

27

Results

Modular: works on one procedure at a time.
Practical: took on average 6 secs to run per procedure.
Useful: found 2 previously unknown bugs in SPARK.

University of California, San Diego R Gupta, April 2010

Bugs Found in SPARK

Array Copy Propagation

28

Code fragment

Before scheduling
After scheduling

(Buggy)
After scheduling

(Correct)

a[0] := b[1];

c := a[0];

a[0] := b[1];

c := b[0];

a[0] := b[1];

c := b[1];

Code fragment

Before scheduling
After scheduling

(Buggy)
After scheduling

(Correct)

ret[1] := blk[0] <<3;

ret[0] := ret[1];

ret[0] := ret[1];

ret[1] := blk[0] <<3;

ret[1] := blk[0] <<3;

ret[0] := ret[1];

Did not copy array indexRead after Write dependency Code

Motion

University of California, San Diego R Gupta, April 2010

Checker

Transformations

29

Going Forward:

Parameterized Equivalence Checking

Input

Program

(Specification)

Transformed

Program

(Implementation)

Equivalence

Checker
Transformation

 Once and for all

 HLS tool always
produce correct
results

 For each translation

 Does not guarantee
⇒ HLS tool is bug
free

University of California, San Diego R Gupta, April 2010

Parameterized

Equivalence

Checker

30

Parameterized Equivalence Checking (PEC)

Original

Parameterized

Program

Transformed

Parameterized

Program

Transformation
 Once and for all

 HLS tool always
produce correct
results

University of California, San Diego Sudipta Kundu

Transformations Time (secs) #ATP Calls

Copy propagation 1 3

Constant propagation 1 3

Common sub-expression elimination 1 3

Partial redundancy elimination 3 13

Loop invariant code hoisting 8 25

Conditional speculation 2 14

Speculation 3 12

Software pipelining 5 19

Loop unswitching 16 94

Loop unrolling 10 45

Loop peeling 6 40

Loop splitting 15 64

33

Experiments and Results

 Expressed and proved correct various

transformations.

University of California, San Diego R Gupta, April 2010

Verification advances at high-level are a

precondition to success in HLS

Moderate expectations: cf. SLS

Modularity and composition are key to

reducing the size of design/verification

tasks.

Takeaways

34

University of California, San Diego R Gupta, April 2010

Related Work

 Translation Validation
 Sequential Programs [Pnueli et al. 98] [Necula 00]

[Zuck et al. 05]

 CSP Programs [Kundu et al. 07]

 HLS Verification
 Scheduling Step

Correctness preserving transformation [Eveking 99]

Symbolic Simulation [Ashar 99]

 Formal assertions [Narasimhan 01]

Relational approaches for Equivalence of FSMDs [Kim
04, Karfa 06]

35

