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Cost of Design

EDPS 2008

Coming back to 

EDPS!
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Points I want to make today

 Inexorable move to the high-level

Verification must lead the way

Hardware formals need to be tempered 

by software pragmatists

We are making progress in HLV.
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Application Specific 

Integrated Circuit (ASIC)

Logic Synthesis 

Timing ECO 

Layout 

High-Level Design

4

C
o

n
tr

o
ll

e
r

Data path

Verilog, VHDL

⟨1K – 100K lines⟩

Register Transfer 

Level Design (RTL)

….

x = a * b;

c = a < b;

if (c) then

a = b – x;

else

a = b + x;

a = a + x;

b = b * x;

….

C/C++, SystemC

⟨100 – 10K lines⟩
Algorithmic Design

High-Level 

Synthesis 

 Challenge:
 Cope with the growing 

size and heterogeneity.

⇒ Writing RTL designs 
more complex, tedious, 
and error-prone.
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HLD = HLS + HLV ?

 User accessibility vs. Quality of Results (QOR)
 Synthesis goal: reduce designer effort within 

acceptable QOR

 Verification goal: increased effort acceptable for high 
QOR

 HLS: compiler?, PL?
 In reality, it is a verification problem

 Checking product isn’t easy: state explosion in MC, path 
explosion in stateless MC, specification & solver challenges 
in implicit/symbolic state checkers (BMC)…

 Step back and look at the problem again…
 Verify both design process and product together.

 Pay attention to modularity (even at the cost of 
QOR).
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Our recent work in the area: 4 tools

6

High-level Design

High-Level 

Synthesis 

Register Transfer 

Level Design (RTL)

Equivalence 

Checker

Property 

Checker

Property

 Explore various scalable and automatic techniques for 
high-level verification.

 Execution-based Model 

Checking. (DAC08)

 Bounded Model Checking. 

(SPIN09)

 Translation 

Validation 

(ICCAD07, CAV08)

 Parameterized 

Equivalence 

Checking (PLDI 09)
 Benefits

 Find bugs early in the 

design phase.

 Guarantee that the 

properties checked hold in 

the RTL design. 
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 Once and for all

 HLS tool always 
produce correct 
results

 For each translation

 Does not guarantee   
⇒ HLS tool is bug 
free

Checker

Transformations

Check the tool or the product.

7

Translation Validation (TV)

Does guarantee   
⇒ any errors in translation 

will be caught when tool runs

Is the Specification “equivalent” to the Implementation?

Input 

Program

(Specification)

Transformed

Program

(Implementation)

Equivalence 

Checker
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 Parallelizing High-Level Synthesis: SPARK

 Widely used: 4,000 downloads, over 100 active users.

 Moderately large software: around 125, 000 LoC.

8

Close the loop: TV in HLS



Speculative Code Motions

+

+
If Node

T F
Reverse 

Speculation

Conditional 

Speculation

Speculation

Across Hierarchical

Blocks

_

a

b

c

Operation Movement to reduce impact of 

Programming Style on Quality of HLS Results

Early Condition 

Execution

Evaluates conditions

As soon as possible



Increasing the scope of Code Motions

by Inserting New Scheduling Steps

If Node

T F
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+Resource Constraints

Unbalanced

Conditional
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Inserting New Scheduling Steps
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If Node
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Enables Conditional Speculation

If Node

T F

e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_
c

_
d

_ _
e

S0

S1

S2

 Insert scheduling steps into shorter conditional branch

 Enables further code compaction



New Opportunities for “Dynamic” CSE

Due to Code Motions

BB 2 BB 3

BB 1

a = b + c

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

Speculate

BB 2 BB 3

BB 1

a = dcse

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

dcse = b + c BB 0BB 0



New Opportunities for “Dynamic” CSE

Due to Code Motions

BB 2 BB 3

BB 1

a = b + c

BB 6 BB 7

BB 5

d = b + c

BB 4

BB 8

Speculate

BB 2 BB 3

BB 1

a = dcse

BB 6 BB 7

BB 5

d = dcse

BB 4

BB 8

dcse = b + c BB 0BB 0

Speculative Code Motions employed during Scheduling 

enable new “Dynamic” opportunities for CSE
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An Example of HLS

Original Program:Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:

i5: sum = sum + k

i4: k = k + 1

i2: k = p

i1: sum = 0

a1

a0

i3: (k < 10) i6: ¬ (k < 10)
a2

a3

a4

a5

a6

i7: return sum
10

sum = ∑ k
p+1
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An Example of HLS

i2: k = p

i1: sum = 0

a1

a0

Loop Pipelining:

t = k + 1

i5: sum = sum + k

Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:

i4: k = k + 1

i3: (k < 10) i6: ¬ (k < 10)
a2

a3

a4

a5

a6

i7: return sum

i2: k = p

i1: sum = 0

a1

a0

t = k + 1

i4: k   =   t
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An Example of HLS

Copy Propagation:

t = k + 1

i5: sum = sum + ki5: sum = sum + t

t = p + 1

Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:
i3: (k < 10) i6: ¬ (k < 10)

a2

a3

a4

a5

a6

i7: return sum

i2: k = p

i1: sum = 0

a1

a0

t = k + 1

i4: k   =   t

t = t + 1
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An Example of HLS

a0

i1: sum = 0

i2: k = p

i41: t = p + 1

Scheduling:Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

+ + <

Resource Allocation:

t = p + 1

i2: k = p

i1: sum = 0

a1

a0

a2i3: (k < 10) i6: ¬ (k < 10)

a5

a6

i7: return sum

a3

i4: k   =   t

i5: sum = sum + t

a4

t = t + 1

i4: k = t

i5: sum = sum + t

i42: t = t + 1

Read After Write 

dependency
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An Example of HLS

Specification:

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

int SumTo10 (int p)
int sum = 0, k = p;
while (k < 10)

sum += ++k;
return sum;

b0

j1: sum = 0

j2: k = p

j41: t = p + 1

b1j3: (k < 10) j6: ¬ (k < 10)

b3

b4

j7: return sum

b2

j4: k = t

j5: sum = sum + t

j42: t = t + 1

Implementation:

≡

Re-labeled
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 Specification ≡ Implementation 
=> They have the same set of execution 
sequences of visible instructions.

 Visible instructions are:
 Function call and return statements.

 Two function calls are equivalent if the state 
of globals and the arguments are the same.

 Two returns are equivalent if the state of the 
globals and the returned values are the 
same.

20

Definition of Equivalence
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Split program state space in two parts:
 control flow state, which is finite. 

⇒ explored by traversing the CFGs.

 dataflow state, which may be infinite.

⇒ explored using Automated Theorem 

Prover.

21

Our Approach
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Our Approach

ps = pi

ks = ki Λ sums = sumi

Λ (ks + 1) = ti

sums = sumi

i2: k = p

i1: sum = 0

i3: (k < 10)
i6: ¬ (k < 10)

i4: k = k + 1

i5: sum = sum + k

a2

a3

a4

a5

a1

a6

a0

i7: return sum

b1

b2

b3

b4

b0

j1: sum = 0

j2: k = p

j41: t = p + 1

j4: k = t

j5: sum = sum + t

j42: t = t + 1

j7: return sum

j6: ¬ (k < 10)j3: (k < 10)

Specification Implementation

Invariant over the states of the two programs 

(l1, l2) 1st Pass 2nd Pass

1. (a0, b0) ps = pi ps = pi

2. (a2, b1) ks = ki ks = ki  Λ sums = sumi Λ (ks + 1) = ti

3. (a5, b3) sums = sumi sums = sumi
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 Two step approach. 

 Generate Constraints: traverses the CFGs 

simultaneously and generates the constraints 

required for the visible instructions to be matched.

 Solve Constraints: solves the constraints using a 

fixpoint algorithm.

 For loops: iterate to a fixed point.

 May not terminate in general.

 However, for all the benchmarks of SPARK that we 

ran our algorithm terminates.

23

Translation Validation Algorithm
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SPARK: Parallelizing HLS Framework

26

Binding

Intermediate 

Representation (IR)

Scheduled IR

SPARK : HLS Framework

No Pointer
No Recursion
No goto

….

x = a * b;

c = a < b;

if (c) then

a = b – x;

else

a = b + x;

a = a + x;

b = b * x;

….

C Program

RTL

Equivalence 

Checker

Pre-Synthesis 

Optimization
Allocation Scheduling

Transformations: Code Motion, CSE, IVA, Copy 

Propagation, Dead Code Elimination, Percolation, 

Trailblazing, Chaining Across conditions, dynamic CSE.

Heuristics: HTG Scheduling Walker, Candidate Op 

Walker, Get Available Ops, Loop Pipelining
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Benchmarks
No. of simulation 

relation entries 

No. of calls to 

theorem prover

Time

(secs)

1.  incrementer 6 9 00.5

2.  integer-sum 6 20 00.8

3.  array-sum 6 24 00.8

4.  diffeq 7 41 01.6

5.  waka 11 79 02.6

6.  pipelining 12 75 02.3

7.  rotor 14 71 02.5

8.  parker 26 281 05.2

9.  s2r 27 570 26.7

10. findmin8 29 787 14.8

27

Results

Modular: works on one procedure at a time.
Practical: took on average 6 secs to run per procedure.
Useful: found 2 previously unknown bugs in SPARK.



University of California, San Diego R Gupta, April 2010

Bugs Found in SPARK

Array Copy Propagation

28

Code fragment

Before scheduling
After scheduling 

(Buggy)
After scheduling 

(Correct)

a[0] := b[1];

c := a[0];

a[0] := b[1];

c := b[0];

a[0] := b[1];

c := b[1];

Code fragment

Before scheduling
After scheduling 

(Buggy)
After scheduling 

(Correct)

ret[1] := blk[0] <<3;

ret[0] := ret[1];

ret[0] := ret[1]; 

ret[1] := blk[0] <<3;

ret[1] := blk[0] <<3;

ret[0] := ret[1];

Did not copy array indexRead after Write dependency Code 

Motion
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Checker

Transformations

29

Going Forward: 

Parameterized Equivalence Checking

Input 

Program

(Specification)

Transformed

Program

(Implementation)

Equivalence 

Checker
Transformation

 Once and for all

 HLS tool always 
produce correct 
results

 For each translation

 Does not guarantee   
⇒ HLS tool is bug 
free
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Parameterized 

Equivalence

Checker

30

Parameterized Equivalence Checking (PEC)

Original

Parameterized 

Program

Transformed

Parameterized 

Program

Transformation
 Once and for all

 HLS tool always 
produce correct 
results
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Transformations Time (secs) #ATP Calls

Copy propagation 1 3

Constant propagation 1 3

Common sub-expression elimination 1 3

Partial redundancy elimination 3 13

Loop invariant code hoisting 8 25

Conditional speculation 2 14

Speculation 3 12

Software pipelining 5 19

Loop unswitching 16 94

Loop unrolling 10 45

Loop peeling 6 40

Loop splitting 15 64

33

Experiments and Results

 Expressed and proved correct various 

transformations.
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Verification advances at high-level are a 

precondition to success in HLS

Moderate expectations: cf. SLS

Modularity and composition are key to 

reducing the size of design/verification 

tasks.

Takeaways

34
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Related Work

 Translation Validation
 Sequential Programs [Pnueli et al. 98] [Necula 00] 

[Zuck et al. 05]

 CSP Programs [Kundu et al. 07]

 HLS Verification
 Scheduling Step

Correctness preserving transformation [Eveking 99]

Symbolic Simulation [Ashar 99]

 Formal assertions [Narasimhan 01]

Relational approaches for Equivalence of FSMDs [Kim 
04, Karfa 06]
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