CIRANOVA

Is the SoC Analog (EDA) Revolution Really Here?

Eric Filseth Ciranova www.ciranova.com

Analog Physical EDA: 15 Yrs of Evolution

Trickle of EDA innovations

- CAD frameworks in the early 1990s
 - Unified electrical, physical representation
- PCells for device layout
- Schematic Driven Layout in mid-1990's
- Shape-based routing for top-level assembly
- Productivity and usability features in layout tools
- Several commercial attempts at radical automation
 - Neolinear, Barcelona ...
 - Limited use on production designs

You Say You Want a Revolution ...

... so why are we still doing it the same old way?

- Not enough value?
 - A. QoR penalty too large?
 - Productivity benefit too small too much setup/use effort? B.
- Cultural? ¢.
 - disagree! "Analog people don't want tools" (!?)
 - Decline of "strategic CAD" \rightarrow emphasis on current-design payoff
 - Means quick <u>Design Team</u> adoption is critical
 - Alternative is not "don't automate" but "automate next time"
 - Revolution = huge value proposition with no risk

A. QoR – 3 Components

- 1. Circuit requirements matching, symmetry ...
 - Requires experienced designer
- 2. Device-level optimizations abutment, well merging ...
 - Automate, but accept human designer can usually do better
- 3. Optimization to design rules
 - Automation may outperform human designer below 65nm

B. TTM and Productivity

Don't laugh! ... this is a <u>big deal</u> to design teams, and CAD groups are no longer funded to make visionary methodology investments!

TTM: Iterations are Inherent

- Example: communications circuit, 832 devices, 90nm
- 4 levels hierarchy, 24 subcircuits
- Total cycle netlist-to-fully-constrained placement = 11hrs
- <u>40-50</u> total constraint/placement iterations used

- 1-3 runs on each leaf-level subcircuit
- 3-5 runs at mid-levels
- 2-4 runs on full design
- Placement run times (1 CPU)
 - Full circuit minutes
 - Subcircuits seconds

Iterate

Add Constraints (experienced designer)

Generate Layout (tool)

Ciranova Confidential

Summary – it's an ENGINE Revolution

Automation = QoR + Low Setup Effort + Low Iteration Effort

A Layout engine must be easy to control by designers

- Good QoR from simple (and "imperfect") geometric constraints
- Must do device-level optimization and DRC-correct automatically
 - NO manual editing allowed within iterations
- Run times must be <u>fast</u>

This is architecture stuff – not GUI / flow stuff

Ciranova Confidential

Target Market: "Analog" vs "SoC Analog"

Traditional Analog/Mixed-Signal

Compete on Analog QoR Need "good enough" TTM

SoC Analog/Mixed-Signal

Compete on TTM with More Features Need "good enough" QoR on analog/mixed-signal IP

Right target market for automation: integration of analog/mixed-signal content into Nanometer CMOS SoC's

Automation = trade off a little QoR for a lot of TTM

Ciranova Confidential

Solve Device and Circuit Layout Together

No clean division

- Circuit (Schematic)
- Devices (PCells/PDKs)
- Design rules

Must automate at both levels at once, in full context of design rules

Nanometer PDKs – Revolution is Underway

PyCells - intelligent PDK's

- \diamond << $\frac{1}{2}$ the lines of code at 65nm and below
- ♦ Fast to port PyCells to new process nodes → essential for porting higher-level IP
- Facilitates higher-level PDK IP

Nanometer PDKs – Revolution is Underway

🔀 Close Window I 🕒 Print I 🔚 Save As

Taiwan Semiconductor Manufacturing Company Limited

CIRANOVA AND TSMC ANNOUNCE STRATEGIC PARTNERSHIP ON ADVANCED PDK TECHNOLOGY

Issued by: Ciranova and TSMC Issued on: 2009/03/24

SANTA CLARA, Calif. – March 24, 2009 – Taiwan Semiconductor Manufacturing Company, Ltd. (TSE: 2330, NYSE: TSM) and Ciranova™ announced a multi-year strategic partnership to collaborate on the development of advanced Process Design Kit (PDK) technology based on Ciranova's PvCell architecture. The results of

Automated-Placement Architecture

Placement QoR

Customer Design

- PLL, 3193 devices
- Major foundry 90nm
- 4 levels of hierarchy,
 38 subcircuits
- Total time netlist-to-good placement = 16 hours
 - Run times
 - Full PLL 15 min
 - · Subcircuits seconds
 - 60-80 total placement runs
 - 1-3 runs on each leaf-level subcircuit
 - 3-5 runs at mid-levels
 - · 2-4 runs on full design

Analog/Mixed-Signal IP Re-Use

Analog/MS IP Reuse in New Technology

- Same constraints
- Same netlist
 - active devices resized if necessary; by hand or possibly by a circuit optimizer
 - At least one of our SoC customers is designing circuits to work at multiple process nodes w/o resizing ... trades off some die area for TTM
- New tech file
- Same PyCells w/ new tech file

Not a geometric shrink, but a full re-layout of the same circuit, optimized for new design rules

(ie the same way a layout team would do it!)

→ Port takes 1 iteration, not 50!

Trial Routing

- Routing is complicated!
 - But less important than placement
- "Trial" route firstpass interconnect
 - Layout parasitics
 - Routability
 - Not enough experience yet

Experiences with Users

- ♦ Capacity is important 20,000+ devices
- Routability hasn't been a practical issue
- Floorplanning is a big win
- Most power users drop the GUI and hack the constraint file
 - Still need the GUI for learning (and probably re-learning)
- There is a mental shift
 - "Make all the decisions" vs "make the key decisions and let the computer do the rest"
- Golden netlist often isn't; golden PDK's often aren't
- It doesn't take much "tool overhead" to make a big difference in designer enthusiasm
- Resist the temptation to add new constraint classes

Long Live the Revolution

- Tools: automation formula =
 - Very good QoR:
 - 1. Circuit level assist designer; use model critical
 - 2. Device level automate
 - 3. DRC correct automate
 - Low setup effort, low iteration effort, very high speed and capacity
 - Solve both device (PDK) and circuit levels concurrently

Market

- Integration of mixed-signal content into nanometer CMOS SoC's
- EDA revolution
 - PDK's now
 - Layout now ?

Schematic	Automation	Layout Editor
Database		

