
The parallelism mirage

 Patrick Groeneveld,
Chief Technologist, Magma Design Automation

EDP Monterey April 2009

April 13, 2009 – EDP 2009- 2

Core challenge: Two-fold Complexity Increase

April 13, 2009 – EDP 2009- 3

ITRS Roadmap: Design cost and Design Automation

Source: ITRS design roadmap http://public.itrs.net/Files/2001ITRS/design.pdf

Physical
 Synthesis

April 13, 2009 – EDP 2009- 4

Time-warp back to the previous century

Design community 1997:
“Mr. EDA: tear down this wall!”

Logic
synthesis

Place &
Route

Fab

netlist

GDS2

April 13, 2009 – EDP 2009- 5

Terra Bella Avenue, Mountain View, CA
Magma in august 1997

April 13, 2009 – EDP 2009- 6

The Magma revolution

Fab

netlist

GDS2

April 13, 2009 – EDP 2009- 7

ITRS 2007: recommendations

“Ideally, the time-wasting iteration between logic and layout
synthesis in today’s design

methodologies could be eliminated by fusing these
stages to simultaneously

optimize the logical structure as well as layout of a circuit.”

“To avoid excessive guardbanding due to poor estimates,
logical design and eventually

system-level design must become more
closely linked with physical design.”

ITRS Design Roadmap 2007

ITRS Design Roadmap 2007

April 13, 2009 – EDP 2009- 8

Synthesis is from Mars, Analysis is from Venus

• Sign-off
tools:

• Verification,
 extraction,
STA,
spice, DRC,
 LVS

• Highly accurate
• Big and slow

•  Is the ‘whiner’

•  Implementation
 tools:

• RTL synthesis,
 Placement,
 Routing,
 Optimization,
 Humans

• Poor accuracy
• Lean, mean

•  Is the ‘hacker’

Need to make this work

April 13, 2009 – EDP 2009- 9

CUDA & EDA: What’s wrong with this picture??

April 13, 2009 – EDP 2009- 10

How IC design really works…

• Avoid loops:
•  Correct-by-construction

 methods
•  ABC flow

• Speed up loop by:
•  Reducing analysis accuracy
•  Tricks: incremental analysis
•  Running tasks in parallel
•  Take away walls between tools

Gate rewiring

Detailed placer

Global router

Track router

Detailed router

Gate resizing

Gate buffering

Global placer

Mapping

Detailed opt.

Global-level
timer

Sign-off
DRC checker

Timer &
Extractor

Sign-off
Timer

Buffering

Clock Tree S.

Finesim-
Spice

Formal
Verification Iterate:

April 13, 2009 – EDP 2009- 11

Data model greases the wheels

CDFG Net list of Hyper Cells

Placement

April 13, 2009 – EDP 2009- 12

Design is a trade-off

April 13, 2009 – EDP 2009- 13

The nature of the IC design ‘beast’

Fact:
Pushing all objectives costs:
•  Human design effort and
•  Run time

quality

R
un

tim
e,

 e
ffo

rt

Timing or power

April 13, 2009 – EDP 2009- 14

Building a design flow for Multiple objectives

Fact:
No single implementation step
can deliver
the optimum trade-off at 32nm

Gate rewiring

Detailed placer

Global router

Track router

Detailed router

Gate resizing

Gate buffering

Global placer

Mapping

Detailed opt.

Global-level
timer

Sign-off
DRC checker

Timer &
Extractor

Sign-off
Timer

Buffering

Clock Tree S.

Finesim-
Spice

Formal
Verification

April 13, 2009 – EDP 2009- 15

The truth about RTL2GDS2 Design Automation

It must deal with many ‘nitty gritty’ details

Algorithmic steps do
things that could cause
problems at later steps

April 13, 2009 – Patrick Groeneveld - 16

The ABC of a well-engineered design flow

April 13, 2009 – Patrick Groeneveld - 17

Many ABC’s

Gate rewiring

Detailed placer

Global router

Track router

Detailed router

Gate resizing

Gate buffering

Global placer

Mapping

Detailed opt.

Global-level
timer

Sign-off
DRC checker

Timer &
Extractor

Sign-off
Timer

Buffering
•  Timing closure:

•  Pre-Buffering, logic optimization
•  Mapping, placement
•  Gate level optimization

•  Routing closure:
•  congestion driven placement
•  Global, track & detailed routers
•  Incrementally fix DRCs

•  Variability robustness:
•  add margin, robust clock trees
•  Gate-level optimization
•  Fix setup and hold violations for each

corner
•  Crosstalk:

•  Oversize weak drivers, shielding
•  X-talk avoiding global and track routing
•  ECO-level x-talk fixing

Clock Tree S.

Power
analysis

April 13, 2009 – Patrick Groeneveld - 18

Trading off Avoidance and Correction

Area, power,
performance

More avoidance

C
or

re
ct

io
n

ef
fo

rt

• Effectively use
parallel hardware.

•  Intelligent avoidance
•  Early in flow
•  Center process corners

• Reduce cycles
•  Converge faster
•  SITL

Effort,
Runtime
Due to

correction

April 13, 2009 – EDP 2009- 19

Amdahl’s law: Why parallelization gain tapers off

•  Runtime = R

P * R

(1-P) * R

(P * R)/N

(1-P) * R

O

•  Run time = R/((1-P) + P/N)

P
 Maximum speedup

50%
 2x

80%
 5x

90%
 10x

95%
 20x

Parallelizable
part

Non Parallelizable
part

Parallelization
Overhead:
Distribution,
Locks,
 contention,
Assembly

+ O

Reality

0.8x

2.0x

2.5x

2.8x

April 13, 2009 – EDP 2009- 20

Parallelizing a single step in the flow

thread1

(P * R)/N

(1-P) * R

O

of processors

R
el

at
iv

e
sp

ee
du

p

2 4 5 8 10 12 14 16 18 20 22 24

2x

4x

6x

8x

10x

12x

14x

16x

18x

20x

26 28 30 32

thread2

thread3 thread4

P = 75%

P = 90%

P = 95%

April 13, 2009 – EDP 2009- 21

Parallelizing the flow: Can we break the barrier?

Synthesis

Placement

STA

Extraction

Global

Routing

of processors

R
el

at
iv

e
sp

ee
du

p

1 2 3 4 5 6 7 8 9 10 11 12

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

13 14 15 16

Dream

Detailed

Routing

Opto

Reality

O

April 13, 2009 – EDP 2009- 22

Parallelism overhead

•  Successful parallelization
 requires very low overhead

•  What causes overhead?
•  1: Interactions between threads

•  Dependencies, locks, unequal
 load distribution

•  2: Resource bottlenecks
•  I/O bandwidth to memory or disk

•  3: Partitioning and re-assembly
•  After threads are done
•  Cost of fixing border problems

•  So the key is to define design
 tasks that are 100%
 independent
•  That is why most analysis tools

 are easier to parallelize.
•  That is why routing is better

 parallelizable than optimization

thread1 thread2 thread3 thread4

5 6 7 8

9 10 11 12

13 14 15 16

April 13, 2009 – EDP 2009- 23

Partitioning is Evil

• Why is it evil?
• Overall quality suffers

•  Cannot optimize across boundaries

• Partitioning problem is not easy.
• Good partitions take (non

-parallelizable) effort!
•  Algorithmic
•  Need to duplicate data

Partitioning:
A necessary evil

for the sake
of parallelism?

April 13, 2009 – EDP 2009- 24

Repeatablity: parallelism's silent killer

• 4 processors,
 16 jobs to do.

thread1 thread2 thread3 thread4

5 6 7 8

9 10 11 12

13 14 15 16

In case jobs are
 100%

 independent

Need to
 sync

April 13, 2009 – EDP 2009- 25

Hitting each parallelization sweetspot

•  Hierarchical internal representation
•  Each tool needs a different view on

 this hierarchy:
•  Logical synthesis (logical hierarchy)
•  Floorplan synthesis (modified hierarchy)
•  Coarse placer (flat with clusters)
•  Voltage island generation (floorplan objects)
•  Timer (tiles at flop boundaries)
•  Parasitic extraction (net + region based)
•  Global router (10 x 10 tiles)
•  Track router tiles (columns)
•  Detailed router tiles (50 x 50)
•  DRC checking (net-based, region based)

Gate rewiring

Detailed placer

Global router

Track router

Detailed router

Gate resizing

Gate buffering

Global placer

Mapping

Detailed opt.

Global-level
timer

Sign-off
DRC checker

Timer &
Extractor

Sign-off
Timer

Buffering

Clock Tree S.

Finesim-
Spice

Formal
Verification

April 13, 2009 – EDP 2009- 26

Finding partitions

• To hit sweetspot, we need to partition in
 different ways throughout the flow

April 13, 2009 – EDP 2009- 27

Using fine-grain partitioning in IC synthesis

•  Hard to keep partitions independent (logically and physically)

rewiring

resizing

buffering

Incremental
Timer &

Extractor

Partition

Assemble

April 13, 2009 – EDP 2009- 28

Coarse-grain partitioning: ‘Hydra’

place

Partition/budget

Assemble

Build each block in parallel

April 13, 2009 – EDP 2009- 29

Multiprocessing secrets
“they” don’t want you to know about

•  Code is hard to write
•  Code is hard to debug
•  Adds significant partitioning and assembly overhead
•  Narrow sweetspot in EDA analysis tools:

•  DRC, SPICE, perhaps STA
•  Synthesis algorithms are tough due to dependencies

•  Repeatability costs efficiency
•  Amdahl’s law still holds

•  Realistic gain maxes out at 4x
•  Using parallelism costs Quality of Result

•  Parallel EDA startups were spectacular failures
•  Monterey, Athena, Liga

April 13, 2009 – EDP 2009- 30

 How to really speed up: fewer design cycles

• Design is tuning of a TCL
 script
•  And fixing problems

• Avoid ‘stupid’ mistakes
•  Rigorous testing

• Need Correct-by
-construction
•  By backing off constraints

• Less C, more A

Run tool
flow

Analyze results

run.tcl Design
data

Timing
report

April 13, 2009 – EDP 2009- 31

Summary: it’s the flow, not the algorithm!

• A few EDA analysis tools may parallelize OK:
• SPICE, DRC

• Synthesis tool flows parallelize poorly
• Nature of the algorithms and flows, data size
• Customers not willing to pay quality hit

• Overall flow speedup saturates at 3x-4x

• We’ll figure it out somehow
• Parallelism is only a part of the solution…

