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As System-on-Chip (SoC) semiconductors 
become more complex, interconnect 
technology needs to keep pace. SoCs with 
50 top-level IPs, or with huge subsystems 
that are bigger than an entire SoC of the 
previous generation, are forcing a rethink 
of SoC assembly. 

The first segment that is reaching these 
levels of complexity is the mobility 
ecosystem, in which computers are being 
turned into cell phones, such as the iPhone, 
or cell phones are being turned into 
computers, such as the Nokia N95. During 
the last few years, the Network-on-Chip 
(NoC) concept has emerged as an 
attractive way to win the SoC complexity 
challenge. 

A NoC is a multi-layer packet-based 
transport system, operating within a chip in 
a way that is loosely similar to the way an 
Internet operates. At the technical level, 
however, the comparison stops there, for 
the following reasons. 

Feed-forward algorithms typically 
implemented for an Internet are not used in 
a NoC because of the excessive latency 
they produce, unlike the NoC's use of 
wormhole routing algorithms to minimize 
on-chip latency. 

Similarly, deterministic routing is applied 
in a NoC to provide proper handling of 
verification and reliability issues, because 

Internet-suitable adaptive routing would be 
deficient in these areas.   

It is commonly held that the asynchronous 
approach to NoC implementation has its 
place, but not in mainstream SoCs, because 
of the NoC's impact on proven RTL-to-
Layout EDA flows, physical IP libraries, 
and SoC test procedures. 

The Arteris Globally Asynchronous, 
Locally Synchronous (GALS) 
methodology, however, provides the 
benefits of the asynchronous approach, 
with its partitioning of complex SoCs into 
synchronous islands of power and voltage, 
without disrupting EDA and physical IP 
methodologies. 

The GALS approach combines practical 
implementation of the best networking 
concepts with pragmatic handling of 
submicron SoC interconnect issues. 

All major SoC components such as CPUs, 
DSPs, DMAs, Video engines, hardware 
accelerators, and so on, have in common 
the generation of load and store 
transactions. 

An efficient interconnect solution therefore 
must support the simultaneous generation 
of a large number of transactions of 
various sizes changing transition states and 
undergoing packaging as they are 
optimized for handling. 



It is this fundamental requirement that 
clearly distinguishes a NoC from classical 
terrestrial networks, such as the Internet. 

SoC designers and architects must deal 
with the interconnection of many various 
IP blocks. Although this interconnect 
typically represents only about 6–10 
percent of total SoC area, it is very 
challenging to design, and accounts for 
most of the integration and timing 
problems. 

Common among such problems are long 
wires and their associated timing closure 
issues, late-known or unclear floorplan 
constraints, and multiple frequency and 
power domains. It is not unusual for entire 
projects to be delayed, or in fact, cancelled, 
because of interconnect related-issues. 

A true NoC solution therefore must be 
deployed at multiple stages, from 
specification down to physical design of 
the SoC. It must provide solutions to the 
issues faced by a whole range of users, 
from SoC architects and designers, to 
verification and layout engineers. 

The remainder of this article examines a 
few of these commonly-identified issues 
and explains how a well-designed NoC can 
address them. 

On-chip interconnect 
requirements 
Many well-known standards defining 
socket protocols, such as AXI™, AHB™

, 
and OCP™, are being used by a wide 
community of designers. IPs which output 
these protocols are often proven on 
multiple designs. Many companies also use 
proprietary protocols and sockets across 
projects, or even company wide. 
Consequently, in order to facilitate design 
re-use and interoperability, there is a need 
to connect IPs that use different socket 
methods. From a NoC perspective, 
communication between an "AMBA™ 
initiator" and an "OCP target" should be 

supported transparently whatever the 
differences in semantics between the two 
protocols. 

An interconnect in a complex SoC must 
also cope with the QoS requirements of all 
the integrated IPs, the traffic between 
which is often classified as follows: 

Guaranteed Bandwidth or Real 
Time:  Throughput-critical traffic, for 
example, to fill a display memory. 

Processor:  Latency-critical traffic, such 
as for a CPU, for which a lost cycle can 
never be recovered.  

Best effort:  Traffic which exploits 
remaining bandwidth. 

Part of the interconnect challenge is to 
handle these different IP traffic needs. 

Another part of that challenge is efficient 
transport, one of the most important 
aspects of the NoC because a properly 
defined NoC transport protocol can 
significantly improve global system 
performance. In comparison, using bus-
based socket protocols for transport leads 
to very inefficient implementation because, 
at the transport layer, wires are long and 
routing becomes difficult. It is critical 
therefore to keep the number of wires for 
transport to a minimum, which results in 
much easier and less costly buffering and 
pipelining. Designers must keep in mind 
that any on-chip communication system 
that has not been designed for wire 
optimization will create problems for high-
performance designs. 

Certain new SoC designs are becoming 
more and more complex and expensive to 
develop. Such designs often have multiple 
derivatives that address multiple market 
requirements. These platforms, which 
impose new constraints on topology 
because of the wide spectrum of 
applications they support, need to evolve 
quickly to address market needs. The 
efficient NoC therefore must support any 



interconnection topology (2DMesh, 
NUMA, octagon, clustered) and be suitable 
for late-stage specification changes. 

An effective NoC solution must also be 
flexible enough to address a problem 
discovered in layout without having to 
redesign the entire interconnect 
architecture. Moreover, for optimal control, 
an interconnect should not place 
restrictions on the granularity of clock and 
power domain partitioning. 

Finally, as mentioned earlier, because an 
on-chip interconnect is dominated by wires, 
not gates, it should be extremely wire 
efficient, in order to avoid congestion. 

Meeting the requirements 
of a pragmatic NoC 
Given a basic NoC architecture, as 
illustrated by the following figure. 
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This architecture resembles a "real" IT 
network because of its distinct use of the 
following three layers: 

Physical: The medium that carries 
information (32, 64, or 128 bits, GALs, 
Chip-to-Chip links). 

Transport: Provides routing and 
arbitration of packets, as required by 
QoS. 

Transaction: Converts transactions into 
NoC packets. 

A key aspect of efficient NoC system 
design is the use of Network Interface 
Units (NIU), which employ a mechanism 
that maps initiator transactions into packets, 
and converts packets back into transactions 
for the target. This mechanism is more 
efficient than encapsulation, and provides 
true interoperability for multiple protocols 
being used on the same chip. Moreover, 
transaction destinations are decoded by 
NIUs, making the transport more efficient. 

Arteris NoC Solution provides native 
support for all existing standard socket 
protocols (AXI, AHB, OCP, custom) and 
interfaces with third-party memory 
controller IP providers. 

The following example illustrates NIU 
operation: 

Given an OCP Initiator running at 200 MHz 
and generating a "Write increment of 5 words 
(no response) at address 0x00010008." 

In this example, the NIU: 

• decodes the target (a 32-bit AHB slave), 
and 

• maps the transaction into a NoC "Write 
Increment" type packet at address 
0x0000008. 

With the final destination specified, a 
Transport with the following elements can 
be built: 

• a 64-bit data-path, 

• reduced to 32 bits (size converter), 

• followed by a bisynchronous FIFO, 

• to reach the target NIU running at 133 
MHz. 



The target NIU will map the NoC packet 
onto a write incremental unspecified of ten 
cycles on the AHB socket. 

Quality of Service and Memory 
To obtain an effective NoC, initiator 
requirements for quality of service must be 
handled together with efficient access to 
memory controllers. From the memory 
controller perspective,  memory efficiency 
is obtained by smart scheduling of 
transactions. From the initiator perspective, 
QoS is ensured by throughput services 
guaranteed by the NoC. 

To handle these requirements, the Arteris 
NoC IP library contains QoS-dedicated 
units, among which: 

• The Bandwidth Regulator unit, which 
guarantees throughput for a given 
initiator. 

• The Pressure unit, which embodies a 
mechanism that allows  QoS-related 
data to be transported through the NoC 
from the initiator to the target and 
across multiple levels of switches. 

• The Memory Scheduler unit, which 
optimizes DDR access at the target, 
based on packet priority and other 
configurable criteria such as bank 
swapping, page hits, Read–Write turns, 
and so forth. The unit makes it possible 
to obtain a tradeoff between latency 
and throughput, based on dynamic 
priorities managed by the NoC. 

For example, software engineers typically 
ask for maximum CPU performance, but in 
compensation are unable to define a limit 
for memory bandwidth consumption. In 
consequence, the platform architect needs 
to define minimal guaranteed bandwidth 
for CPUs. Any excess bandwidth is made 
available in "best effort" mode. Real-time 
traffic, however, which is more regular and 
predictable, always gets priority when 
buffering capacity falls short. QoS 
handling, therefore, must be totally 
supported by the memory scheduler. 

Memory interleaving is an advanced 
technique for memory handling that is used 
to deal with multiple DDR interfaces and 
variable burst sizes in the system. The 
technique makes it possible to handle small 
memory bursts, for example, the 16-byte 
bursts typical of MPEG computing or data 
cache refill, together with large ones, such 
as 128-byte bursts from DMA rasters or 
Ethernet Gigabit interfaces. 

Obviously, 32-bit DDR interfaces handling 
16-byte bursts is not a particularly efficient 
solution. A flexible NoC therefore must be 
able to address both multiple 16-bit DDR 
interfaces, which efficiently handle small 
bursts, and interleave larger bursts on 
different memories. This capability greatly 
simplifies the initiator’s task, and enables 
easier configuration of the final product. 

Efficient transport 

 

Self-contained packets are at the root of an 
efficient NoC solution. NIUs are 
responsible for generating these packets, 
which carry both transport control 
information and payload. This approach is 
extremely wire-efficient, and has very little 
impact on latency. 

This packet-based approach make it 
possible to completely separate request and 
response networks, which operate 
independently. This prevents deadlock, and 
allows for specific optimization when 
potentially dissymmetric traffic occurs. 
Because the Arteris NoC is fully stateless, 



it can scale without limitation to fill any 
design needs. 

 
To understand how the NoC handles a 
typical basic transport problem that occurs 
in most of today’s multicore systems, 
consider the following example. 

Given four 32-bit traffic flows at 200 MHz, 
aggregated into a single 64-bit traffic flow at 
400 MHz. 

The NoC must provide a way to merge this 
traffic into a single stream without 
inserting unnecessary wait states. In the 
Arteris system, the solution lies in various 
NoC IP library units, such as rate adapter, 
size converter, and FIFO, that have been 
specifically designed for this purpose. 

To deal with multiple, cross-over clock 
domains, or multi-die chips, designers 
resort to using different physical layers. As 
a result, the transport layer must be 
independent from the medium, or physical 
layer. In these circumstances, link widths 
and frequencies are the easiest to change. 
When NoC operation crosses multiple 
frequency domains, designers can use a 
mesosynchronous link, which provides on-
chip  transport of data plus clock on the 
same long wires, without skewed routing. 
In case of multi-die designs, the Arteris 
Chip-to-Chip link can be used to transport 
NoC packets within the context of a 
physical SERDES-type interface, for 
example, the PIPE standard from PCI 
Express. 

These options also ensure that designers 
can always respond to unavoidable 
changes in specification and floorplan. 

NoC integration is best performed at the 
last stage of design, when timing margins 
are low and routing constraints are tough. 
The following Arteris NoC features 
provide an effective way to deal with 
layout changes: 

Point-to-Point connection:  Vital to any 
bus-based interconnect solution, which 
creates layout problems because of 
unpredictable loads (fanout + wires). 
This is true not only for the high 
performance part of the interconnect, 
but also when a large number of blocks 
(peripherals) are connected. Bus 
structures are making the interconnect 
much more exposed to last minute 
changes, such as load and timing 
variations. 

Wire efficiency:  Of utmost importance 
for the back-end, measures the average 
throughput-per-wire. Requires an 
efficient transport protocol operating 
over a minimal number of wires and 
able to support multiple physical layers. 
Performing MUX–DEMUX operations 
in the NIU, that is, at the network 
peripheral, is key to easing backend 
operations, avoiding routing congestion, 
and facilitating timing convergence. 

Pipelining:  Last but not least, provides 
the capability to insert a pipeline stage 
anywhere in the NoC (NIU, Transport), 
if required. This Arteris feature allows 
designers to fine tune interconnect 
performance (frequency, latency), 
unlike most other competing 
interconnect solutions, which have 
predefined pipelining structures that 
lead to severe limitation of performance. 

NoC Design Tools 
NoC-compatible design, verification, and 
debug tools are critical for productivity and 
time-to-market. Even the finest NoC 
architecture will be of limited use to 
designers unless it comes with a full set of 
support tools. To avoid a production 
adoption barrier, these tools must integrate 
seamlessly with existing EDA tool flows. 
If designers are expected to fully exploit 
the benefits of a NoC solution, support for 
existing EDA standards such as RTL, 
SystemVerilog, System C, and others, is 
vital, not to mention NoC IPs that are 



interoperable with mainstream production 
EDA tools. 

Conclusion 
In complex SoCs based on deep submicron 
processes, the interconnect has to be much 
more than just a set of raw wires. The NoC 
is the optimal solution to various issues 
such as low power efficiency, IP 
interoperability, architecture innovation, 
and challenging performance requirements, 
which traditional bus-based approaches are 
incapable of handling any more. 

This brief overview has touched on 
topology, QoS, and layout, key areas in 
which the Arteris NoC makes a clear 
difference. The NoC can be further 
enhanced with security, test interface 
verification, and software application 
debug, to provide even more added value 
for complex SoC designs. 

When choosing a NoC solution, it is vital 
to carefully consider design requirements 
and challenges in order to obtain a SoC 
that performs correctly, efficiently, and as 
close to performance requirements as 
possible. The Arteris NoC can help achieve 
this, even in the most challenging designs. 
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