

NoC Solution Interconnect
for Managing Increasing SoC Complexity

By K. Charles Janac, President and CEO of Arteris Inc.
and Philippe di Crescenzo, Director of Engineering

As System-on-Chip (SoC) semiconductors
become more complex, interconnect
technology needs to keep pace. SoCs with
50 top-level IPs, or with huge subsystems
that are bigger than an entire SoC of the
previous generation, are forcing a rethink
of SoC assembly.

The first segment that is reaching these
levels of complexity is the mobility
ecosystem, in which computers are being
turned into cell phones, such as the iPhone,
or cell phones are being turned into
computers, such as the Nokia N95. During
the last few years, the Network-on-Chip
(NoC) concept has emerged as an
attractive way to win the SoC complexity
challenge.

A NoC is a multi-layer packet-based
transport system, operating within a chip in
a way that is loosely similar to the way an
Internet operates. At the technical level,
however, the comparison stops there, for
the following reasons.

Feed-forward algorithms typically
implemented for an Internet are not used in
a NoC because of the excessive latency
they produce, unlike the NoC's use of
wormhole routing algorithms to minimize
on-chip latency.

Similarly, deterministic routing is applied
in a NoC to provide proper handling of
verification and reliability issues, because

Internet-suitable adaptive routing would be
deficient in these areas.

It is commonly held that the asynchronous
approach to NoC implementation has its
place, but not in mainstream SoCs, because
of the NoC's impact on proven RTL-to-
Layout EDA flows, physical IP libraries,
and SoC test procedures.

The Arteris Globally Asynchronous,
Locally Synchronous (GALS)
methodology, however, provides the
benefits of the asynchronous approach,
with its partitioning of complex SoCs into
synchronous islands of power and voltage,
without disrupting EDA and physical IP
methodologies.

The GALS approach combines practical
implementation of the best networking
concepts with pragmatic handling of
submicron SoC interconnect issues.

All major SoC components such as CPUs,
DSPs, DMAs, Video engines, hardware
accelerators, and so on, have in common
the generation of load and store
transactions.

An efficient interconnect solution therefore
must support the simultaneous generation
of a large number of transactions of
various sizes changing transition states and
undergoing packaging as they are
optimized for handling.

It is this fundamental requirement that
clearly distinguishes a NoC from classical
terrestrial networks, such as the Internet.

SoC designers and architects must deal
with the interconnection of many various
IP blocks. Although this interconnect
typically represents only about 6–10
percent of total SoC area, it is very
challenging to design, and accounts for
most of the integration and timing
problems.

Common among such problems are long
wires and their associated timing closure
issues, late-known or unclear floorplan
constraints, and multiple frequency and
power domains. It is not unusual for entire
projects to be delayed, or in fact, cancelled,
because of interconnect related-issues.

A true NoC solution therefore must be
deployed at multiple stages, from
specification down to physical design of
the SoC. It must provide solutions to the
issues faced by a whole range of users,
from SoC architects and designers, to
verification and layout engineers.

The remainder of this article examines a
few of these commonly-identified issues
and explains how a well-designed NoC can
address them.

On-chip interconnect
requirements
Many well-known standards defining
socket protocols, such as AXI™, AHB™

,
and OCP™, are being used by a wide
community of designers. IPs which output
these protocols are often proven on
multiple designs. Many companies also use
proprietary protocols and sockets across
projects, or even company wide.
Consequently, in order to facilitate design
re-use and interoperability, there is a need
to connect IPs that use different socket
methods. From a NoC perspective,
communication between an "AMBA™
initiator" and an "OCP target" should be

supported transparently whatever the
differences in semantics between the two
protocols.

An interconnect in a complex SoC must
also cope with the QoS requirements of all
the integrated IPs, the traffic between
which is often classified as follows:

Guaranteed Bandwidth or Real
Time: Throughput-critical traffic, for
example, to fill a display memory.

Processor: Latency-critical traffic, such
as for a CPU, for which a lost cycle can
never be recovered.

Best effort: Traffic which exploits
remaining bandwidth.

Part of the interconnect challenge is to
handle these different IP traffic needs.

Another part of that challenge is efficient
transport, one of the most important
aspects of the NoC because a properly
defined NoC transport protocol can
significantly improve global system
performance. In comparison, using bus-
based socket protocols for transport leads
to very inefficient implementation because,
at the transport layer, wires are long and
routing becomes difficult. It is critical
therefore to keep the number of wires for
transport to a minimum, which results in
much easier and less costly buffering and
pipelining. Designers must keep in mind
that any on-chip communication system
that has not been designed for wire
optimization will create problems for high-
performance designs.

Certain new SoC designs are becoming
more and more complex and expensive to
develop. Such designs often have multiple
derivatives that address multiple market
requirements. These platforms, which
impose new constraints on topology
because of the wide spectrum of
applications they support, need to evolve
quickly to address market needs. The
efficient NoC therefore must support any

interconnection topology (2DMesh,
NUMA, octagon, clustered) and be suitable
for late-stage specification changes.

An effective NoC solution must also be
flexible enough to address a problem
discovered in layout without having to
redesign the entire interconnect
architecture. Moreover, for optimal control,
an interconnect should not place
restrictions on the granularity of clock and
power domain partitioning.

Finally, as mentioned earlier, because an
on-chip interconnect is dominated by wires,
not gates, it should be extremely wire
efficient, in order to avoid congestion.

Meeting the requirements
of a pragmatic NoC
Given a basic NoC architecture, as
illustrated by the following figure.

Network Interface Unit

Physical implementation

Transport Protocol

N
et

w
or

k
F

lo
w

s
C

on
tr

ol

S
ervices M

anagem
ent

AXI, AHB, OCP, Proprietary….

Any technology process Any technology process

End-to-
end flow
control

Link
control

Power
mngt, SW
support

Security

Perf
monitoring

Power

Opt.

BW
regulation

(point-to-point, GALS, multiple clock
domains, …)

(packet transport, routing, network
scheduling)

(IP Protocol converters)

This architecture resembles a "real" IT
network because of its distinct use of the
following three layers:

Physical: The medium that carries
information (32, 64, or 128 bits, GALs,
Chip-to-Chip links).

Transport: Provides routing and
arbitration of packets, as required by
QoS.

Transaction: Converts transactions into
NoC packets.

A key aspect of efficient NoC system
design is the use of Network Interface
Units (NIU), which employ a mechanism
that maps initiator transactions into packets,
and converts packets back into transactions
for the target. This mechanism is more
efficient than encapsulation, and provides
true interoperability for multiple protocols
being used on the same chip. Moreover,
transaction destinations are decoded by
NIUs, making the transport more efficient.

Arteris NoC Solution provides native
support for all existing standard socket
protocols (AXI, AHB, OCP, custom) and
interfaces with third-party memory
controller IP providers.

The following example illustrates NIU
operation:

Given an OCP Initiator running at 200 MHz
and generating a "Write increment of 5 words
(no response) at address 0x00010008."

In this example, the NIU:

• decodes the target (a 32-bit AHB slave),
and

• maps the transaction into a NoC "Write
Increment" type packet at address
0x0000008.

With the final destination specified, a
Transport with the following elements can
be built:

• a 64-bit data-path,

• reduced to 32 bits (size converter),

• followed by a bisynchronous FIFO,

• to reach the target NIU running at 133
MHz.

The target NIU will map the NoC packet
onto a write incremental unspecified of ten
cycles on the AHB socket.

Quality of Service and Memory
To obtain an effective NoC, initiator
requirements for quality of service must be
handled together with efficient access to
memory controllers. From the memory
controller perspective, memory efficiency
is obtained by smart scheduling of
transactions. From the initiator perspective,
QoS is ensured by throughput services
guaranteed by the NoC.

To handle these requirements, the Arteris
NoC IP library contains QoS-dedicated
units, among which:

• The Bandwidth Regulator unit, which
guarantees throughput for a given
initiator.

• The Pressure unit, which embodies a
mechanism that allows QoS-related
data to be transported through the NoC
from the initiator to the target and
across multiple levels of switches.

• The Memory Scheduler unit, which
optimizes DDR access at the target,
based on packet priority and other
configurable criteria such as bank
swapping, page hits, Read–Write turns,
and so forth. The unit makes it possible
to obtain a tradeoff between latency
and throughput, based on dynamic
priorities managed by the NoC.

For example, software engineers typically
ask for maximum CPU performance, but in
compensation are unable to define a limit
for memory bandwidth consumption. In
consequence, the platform architect needs
to define minimal guaranteed bandwidth
for CPUs. Any excess bandwidth is made
available in "best effort" mode. Real-time
traffic, however, which is more regular and
predictable, always gets priority when
buffering capacity falls short. QoS
handling, therefore, must be totally
supported by the memory scheduler.

Memory interleaving is an advanced
technique for memory handling that is used
to deal with multiple DDR interfaces and
variable burst sizes in the system. The
technique makes it possible to handle small
memory bursts, for example, the 16-byte
bursts typical of MPEG computing or data
cache refill, together with large ones, such
as 128-byte bursts from DMA rasters or
Ethernet Gigabit interfaces.

Obviously, 32-bit DDR interfaces handling
16-byte bursts is not a particularly efficient
solution. A flexible NoC therefore must be
able to address both multiple 16-bit DDR
interfaces, which efficiently handle small
bursts, and interleave larger bursts on
different memories. This capability greatly
simplifies the initiator’s task, and enables
easier configuration of the final product.

Efficient transport

Self-contained packets are at the root of an
efficient NoC solution. NIUs are
responsible for generating these packets,
which carry both transport control
information and payload. This approach is
extremely wire-efficient, and has very little
impact on latency.

This packet-based approach make it
possible to completely separate request and
response networks, which operate
independently. This prevents deadlock, and
allows for specific optimization when
potentially dissymmetric traffic occurs.
Because the Arteris NoC is fully stateless,

it can scale without limitation to fill any
design needs.

To understand how the NoC handles a
typical basic transport problem that occurs
in most of today’s multicore systems,
consider the following example.

Given four 32-bit traffic flows at 200 MHz,
aggregated into a single 64-bit traffic flow at
400 MHz.

The NoC must provide a way to merge this
traffic into a single stream without
inserting unnecessary wait states. In the
Arteris system, the solution lies in various
NoC IP library units, such as rate adapter,
size converter, and FIFO, that have been
specifically designed for this purpose.

To deal with multiple, cross-over clock
domains, or multi-die chips, designers
resort to using different physical layers. As
a result, the transport layer must be
independent from the medium, or physical
layer. In these circumstances, link widths
and frequencies are the easiest to change.
When NoC operation crosses multiple
frequency domains, designers can use a
mesosynchronous link, which provides on-
chip transport of data plus clock on the
same long wires, without skewed routing.
In case of multi-die designs, the Arteris
Chip-to-Chip link can be used to transport
NoC packets within the context of a
physical SERDES-type interface, for
example, the PIPE standard from PCI
Express.

These options also ensure that designers
can always respond to unavoidable
changes in specification and floorplan.

NoC integration is best performed at the
last stage of design, when timing margins
are low and routing constraints are tough.
The following Arteris NoC features
provide an effective way to deal with
layout changes:

Point-to-Point connection: Vital to any
bus-based interconnect solution, which
creates layout problems because of
unpredictable loads (fanout + wires).
This is true not only for the high
performance part of the interconnect,
but also when a large number of blocks
(peripherals) are connected. Bus
structures are making the interconnect
much more exposed to last minute
changes, such as load and timing
variations.

Wire efficiency: Of utmost importance
for the back-end, measures the average
throughput-per-wire. Requires an
efficient transport protocol operating
over a minimal number of wires and
able to support multiple physical layers.
Performing MUX–DEMUX operations
in the NIU, that is, at the network
peripheral, is key to easing backend
operations, avoiding routing congestion,
and facilitating timing convergence.

Pipelining: Last but not least, provides
the capability to insert a pipeline stage
anywhere in the NoC (NIU, Transport),
if required. This Arteris feature allows
designers to fine tune interconnect
performance (frequency, latency),
unlike most other competing
interconnect solutions, which have
predefined pipelining structures that
lead to severe limitation of performance.

NoC Design Tools
NoC-compatible design, verification, and
debug tools are critical for productivity and
time-to-market. Even the finest NoC
architecture will be of limited use to
designers unless it comes with a full set of
support tools. To avoid a production
adoption barrier, these tools must integrate
seamlessly with existing EDA tool flows.
If designers are expected to fully exploit
the benefits of a NoC solution, support for
existing EDA standards such as RTL,
SystemVerilog, System C, and others, is
vital, not to mention NoC IPs that are

interoperable with mainstream production
EDA tools.

Conclusion
In complex SoCs based on deep submicron
processes, the interconnect has to be much
more than just a set of raw wires. The NoC
is the optimal solution to various issues
such as low power efficiency, IP
interoperability, architecture innovation,
and challenging performance requirements,
which traditional bus-based approaches are
incapable of handling any more.

This brief overview has touched on
topology, QoS, and layout, key areas in
which the Arteris NoC makes a clear
difference. The NoC can be further
enhanced with security, test interface
verification, and software application
debug, to provide even more added value
for complex SoC designs.

When choosing a NoC solution, it is vital
to carefully consider design requirements
and challenges in order to obtain a SoC
that performs correctly, efficiently, and as
close to performance requirements as
possible. The Arteris NoC can help achieve
this, even in the most challenging designs.

AXI, AHB and AMBA are trademarks of ARM Holdings.
SystemC is a trademark of the Open SystemC Initiative.
OCP is a trademark of OCP-IP. iPhone is a trademark
shared by Cisco® Systems, Inc. and Apple®. Nokia and
Nokia N95 are trademarks of Nokia® Corporation.

