bluespec ESL

SYNTHESIS

Parallel Atomic Transactions + Parameterization:
the breakthrough for SoC Design

Rishiyur Nikhil
CTO, Bluespec, Inc.
nikhil@bluespec.com

EDP 2008, April 18

© Bluespec, Inc., 2007

SoC methodology: the common view

(Spec development
Architectural exploration | SystemC

Performance analysis « Accuracy difficult
 Sim speed too slow, when accurate

Early SW development)
» Complex, when accurate
=
0
p—
® /\
ag « Costly due to semantic gap
= Ma n ua/ « Costly to iterate based on better data from RTL
g) « Difficult to keep in sync
re erte « Cultural gap between teams
» Sim speed too low
* Available late
* Brittle, hard to change
« A » Hard to change as spec changes
[Implementatlon] RTI— » Hard to change for physical closure

f » Hard to adapt for reuse
» Sim speed of testbench?

2 » May not be reusable from models to implementation bluespec

SoC methodology: a partial bright spot?

Nice vision, but ...

“Modeling”
(Spec development Matlab’
Architectural exploration C/C+ +,
Performance analysis SystemC
Early SW development)
c
.0
®© .
RS Automatic
'5 (“High Level Synthesis”
> “Behavioral Synthesis”)
[“Implementation”] RTL
3 bluespec

SoC methodology: a partial bright spot?
... in reality, still

‘Modeling” | Watlab, many problems
(Spec development C/C++,
Early SW development) | SystemC Off-the-shelf C codes can require
significant “restructuring” to suit tools.
) Refinement
Tool-specific
= “Implementation” '\é'fé'ff’
'-g (Architecture exploration Systemb
g Performance analysis) +
E “constraints” ,
= » Only works for small fraction of SoC
/ IPs—“loop-and-array” DSP IPs, and not
: control IPs (processors, caches,
. ,AUtomatIC - DMAs, interconnects, peripherals, ...).
(*High Level Synthesis” « But modern codecs are evolving
Behavioral Synthesis’) towards more control structure, for
/_\ more efficiency.
__ [ImpIementatlon] RTL Hard to optimize “memory architectures”,

often 1st order determinant of efficiency.
bluespec

SoC methodology: a solution

“Modeling” /\
(Spec development Universal: applicable to all IPs, both
Architecture exploration BSV control and data intensive
Performance analysis
Early SW development)
- Refinement . S|r_19Ie paradugr_n from modeling
o to implementation
=) T * Refinement can be formalized
RS, [Implementation] BSV
=
(V)
>
Automatic Full synthe3|zab|I|’Fy => very fast sim on
o - FPGA platforms: early models,
(“H/gh Lfave/ SyntheSI's” implementations, and testbenches
Behavioral Synthesis”)
[“Implementation”] RTL
5 BSV = Bluespec SystemVerilog, based on composable, parallel atomic transactions b|uespec

A flavor of the power of
composable atomic
transactions

bluespec

Control issues

Example: A 2x2 switch with stats

/empty?

full?

+ Packets arrive on
two input FIFOs, and
must be switched to
two output FIFOs

« Certain “interesting
packets” must be _]
counted

arbitration?
+ Must have max

throughput (no idle ¥

cycles) :@D

7 Dynamic, data-dependent access to shared resources! bluespec

The meat of the BSV code

module mkSmallSwitch (IfcSmallSwitch);

// for-loop generates two rules
for (Integerj=0;j<2;j=j+1)
rule move_packet;
let x = in[j].first(); in[j].deq();
if (x[0] == 0)
out[0].enq (x);
else
out[1].enq (x);
if (interesting(x)) c <=c + 1;
endrule

\
\
\
\
\
\
\
<
andmodide-—mkSmallSwiteh @
CHaTM oG oTC O TTamoOwWitert

8 Rules are atomic = complex control is automatically synthesized bluespec

2x2 switch

Verilog

Bluespec

bluespec

Real designhs have even more
complicated control

M, not just 2 < > N, not just 2

Packet drops; A \C (.

m
multicast @ No“‘p it s\
Many counters, \kee

non-exclusive
10 bluespec

Atomic transactions are the best known tool to
tame complex concurrency

For decades: in Operating Systems, Databases,
Distributed Systems

Recently: for software for multi-core/multi-
threaded architectures

"I think we ultimately will see atomic
transactions in most, if not all, languages. That's
a bit of a guess, but I think it's a good bet.“

o RK

SSun

Burton Smith,
Technical Fe”OV\{, SHEtsuABoA - Po100
Parallel Computlng 7:c!t}::__¥£ooasaz
Very recently: HW support for ry
Transactional Memory in processors %@5%@
11 bluespec

BSV’s atomic transactions
compose across module
boundaries using

atomic interface methods

12 bluespec

Atomic Interface Methods

data_in data_out
RTL BSV
push_req_n full ||
pop_req_n empty ﬁ
clk -
FIFO 2| FIFo
rstn hal
A small sample of the informal, All BSV interfaces are

written interface specification:

An error occurs if a push is attempted while the FIFO is full.

transactional

interface FIFO #(t);

Thus. there is no conflict in a simultaneous push and pop when the FIFO is full. A
simultaneous push and pop cannot occur when the FIFO 1S empty. smce there is no pop method Action eng (t X) ;

data to prefetch. However, push data 15 captured m the FIFO.

method x_type first ();

A pop operation occurs when req_n is asserted (LOW). as long as the FIFO is not method Action d eq 0
Empty. £55e111112 req_n causes ti)e Internal Tead poriter 10 DS mcremented on the .
— o T . endinterface

next rising edge of clk. Thus. the RAM read data must be captured on the c1k following

the assertion of pop_req n.

13

bluespec

Atomicity of interface methods encapsulates the
complex control logic necessary for correct module
composition (and, by implication, IP reuse)

theModuleA

theFifo.enq(vatueT); \
theFifo.deq(y;

value2 = theF o.firs%

theModuleB
/ N

theFifo.eng(value3);

Enqueue
arbitration
control

theFifo
n —
| O
C
@
ol
. enab |ol FIFO
Py rdy 1
[
St . 2
T dy
Dequeue
arbitration
control

theFifo.deq()¥—
value4 = theFifo.f#fst();

14

bluespec

Bluespec generates correct control logic to interface
properly at every module instantiation

data_in data_out
I { I L push_req_n full B SV
Push when FULL?
Pop when EMPTY? pop_req_n empty
Simultaneous PUSH/POP?
Arbitrations?
Properly connected? clk FI FO
Grabbing data correctly?
Putting data in correctly? rstn

Logic around every instantiation is at Logic around every instantiation is

risk & every corner case for every correct by construction (control logic

aspect of every instantiation’s arising out of atomicity semantics)
15 interface must be exercised! bluespec

Let’s swap in a different FIFO with the same interface ports,
BUT ...

* The new FIFO allows simultaneous enqg/deq when EMPTY
instead of when FULL (=» change to external control logic)

RTL BSV

The control logic around every The surrounding control logic is
instantiation must change & be automatically resynthesized
retested! from atomic semantici5Iu

16 espec

Disciplined composition of modules
into subsystems and systems

module state Modules contain rules, which use methods
provided by submodules in their interfaces.
interface Methods, too, can use other methods.

Rules, which compose across the system, are
guaranteed atomic.

At L
2

rule

17 bluespec

BSV’s extreme parameterization
enables a single source for a
family of microarchitectures

18 bluespec

Example:
a butterfly switch (crossbar)

2

o
—_

.w,
G e

Basic building blocks: —J— B — i

Recursive construction: 1x1 =» 2x2 = 4x4 ... = NxN

v

-
o

—_
—_

19 bluespec

Butterfly switch: module
(< 60 lines, fully synthesizable)

[2->1 merge submodule]

[Parameterization with ANY type]
[Packet routing function]%
\

module mkXBar #(function UInt #(32) destinationOf (t x),
module #(Merge2xl #(t)) mkMerge2x1l) «——
(XBar #(n, t));+—

‘[High level interfaces]

if (logn == @) .. // BASE CASE
FIFO#(t) f <- mkFIFO;]

Turing-complete “generate”
else .. // RECURSIVE CASE over arbitrary design elements

Recursive module instantiation]
XBar#(nhalf, t) upper <- mkXBar (..);

XBar#(nhalf, t) lower <- mkXBar (..);
L
‘[Generate behavior (rules)]
for (Integer j =0; j <n; j=3+1) .. <« with loops
rule route; ..
if (! flip) merges [j] .iport@.put (x);
else merges [jFlipped].iportl.put (x);
endrule
endmodule: mkXBar

20 bluespec

Example: IFFT (in 802.11a and other apps)
Microarchitectures: from single combinational function ...

in0 stage f function
\ — /OutO
inl 7 Bfly4 Bfly4 Bfly4 —joutl
o e el
in2 g e o \\

/ Bfly4] Bfly4 3 Bfly4 3 \ out2
in3 =3 T o out3
x16 W b s
in4 outd

Bfly4 Bfly4 Bfly4
in63///’ \\\\)ut62
21 bluespec

... to a superfolded circular pipeline: Just
one Bfly-4 node!

in0 \
—
inl 7 K3 sBfiya B s =
= 3
0] 5 I(D
in3 < .
in4 T L
] o® iE &
/ Index 2 o é
H c o
in63 Counter X s L) lFD'
0 to 15 g g N
&
3
C
Even the Permute blocks ®
o w
can be unified through

parameterization

SOXN|
Aem-1 ‘19

22

outO

outl

out2

out3

out4

/ 7\

but63

bluespec

Because of such parameterization,
encapsulation, and reuse,

+ All these designs were done Combinational
in less than one day, with a Pipelined
single parameterized source!

Folded (16 Bfly 4s)

« Very quick exploration of Super Folded (8 Bfly 4s)
area and power tradeoffs

Super Folded (4 Bfly 4s)

+ Transparent, predictable, Super Folded (2 Bfly 4s)
controllable
microarchitecture, despite Super Folded (1 Bfly 4)

high-level spec

Nirav Dave, Mike Pellauer, Steve Gerding, Arvind
23 MEMOCODE 2006 bluespec

The underlying rule-based
atomicity semantics are crucial!

+ Each microarchitecture variation
changes the resource sharing

- Synthesis based on atomicity allows control
logic to track these variations automatically

. I.e., Control Adaptive parameterization

« Latency insensitive methodology
(elastic pipes, GALS) allows robust plug
and play of microarchitecture choices

24 bluespec

Example: H.264 decoder

Complete decoder, not just kernel blocks
Range of implementations from a common
source

. from QCIF: 176x144 @ 15 frames/sec

. to 1080p: (1280x1080)p @ 60 frames/sec

@

@

Synthesized at 180 nm

@

< 10K lines of BSV source code
« Original reference code: > 80K lines of C

. H.264 slice of FFMPEG: 20K lines of C
(unsynthezable)

@

This BSV code is open sourced: http://csg.csail.mit.edu/oshd

25 bluespec

BSV:
well placed for formal verification

26 bluespec

Rules: formality and refinement

« Many formal specification languages use the
same computation model, because it is
parallel, and because atomicity enables
reasoning about correctness with invariants

« UNITY (Chandy&Mishra), TLA+ (Lamport), Event B
(Abrial), ...

+ The Rules computation model can be used
from high levels of abstraction (executable
specs) to lower levels (implementations)

« Vast literature on provably correct refinement

57 bluespec

Implications of BSV's full
synthesizability

« Even high-level models can be executed on
FPGAs
. Early exploration
. Early SW development

+ Verification testbenches can be executed on
FPGAS
= Much faster than Verililog sim for verification

Bluespec provides ‘push button’ infrastructure to
map components with TLM interfaces to FPGAs

28 bluespec

Example: AXI Virtual Platform Demo

—= C++

- __ testbench/
E host SW/
applications

HW/SW Transactors \iLI Transactors Models

Traffic Traffic Traffic Traffic
Gep==qtor| |Gep==qtor| | Gep==qtor ep==qtor
M M M M
AMBA AXI
S S
RAM RAM
29 bluespec

Workstation

30 ' bluespec

Avnet AES-XLX-V4FX-PCIE100-G
(1M gates, 2 PowerPC, $3.5K)

bluespec

AXI Demo Execution Speeds

Bluespec lines of code: 2,000 (including comments)

ASIC gates: 125K
Virtex-4 FX100 slices: 4,723 (10% utilization)

Verilog C/Systemc/ verilog 1X (1.4K cycles/sec)

Bluesim Simulation

Bluesim Clgyeremc/ < 22X (31K cycles/sec)

Emulation C/Systemc/ +—- ERinsa 35,714X (50M cycles/sec)

22 day Verilog sim — 1 day Bluesim — 53 sec Emulation

32 bluespec

33

Some customer use cases:
« IP creation

« Modeling

« Architecture Exploration
« Verification

bluespec

ASIC IP creation at three major
semiconductor companies

Vs

-
« High performance video data mover for video
subsystem1)

/

« System DMA for wireless handset platform1
« Image DMA2

_+ LCD controller2

__+ Turbo Viterbi2 re) ,,,\;\&«\J

34

WY
oMW \e(\
(1)seen silicon; derivatives in progress Pa(am

(2)in progress
bluespec

Modeling at a major IP company

» Cycle-accurate model of a production
LPDDR memory controller
« Will be shipped to each customer of the IP

company
mns)
ot
mah
on (
\N‘(\ BS \c\< ode! ¢!
\eX * ete r\lat\eosr‘\\m3 (s\ (FPGP\,?e\\
° Pa(“- S\m kB\u uch 'ﬁaste ea‘\:\O“ asS
i ential 1 rgp\ace W
. pot ja\to !
. poter™
35 bluespec

Architecture exploration of processor
microarchitectures on FPGAs
(@ a major microprocessor company)

« Background: existing microarchitect’s workbench for exploring
alternative microarchitecture for future processors
Written in C++, developed over a decade

Highly parameterized and configurable, to facilitate
experimentation on alternatives

Heavily used, but running out of gas for simulation speed
(multicore, multithreading)

+ New: rewrite in BSV to synthesize and run on FPGAs,
expected performance advantage > 1000x

+ Status: Demonstrated for 5-stage pipeline model and e Crr
pipelined out-of-order model; development contlnu€‘§\ve\)a

(e ss\"erPGA for sPe°

asV? YAY
h € (o}
W“\} \j {00 :]N\\“eS\Z b \e

. a“
36 bluespec

Architecture exploration of processor
microarchitecture on FPGAs

(@ a major microprocessor/systems company)

« Goal: flexible platform for fast exploration of
microarchitectures for multithreaded +
multicore CPU systems

« Is being implemented in BSV in order to
synthesize and run on FPGAs

. Status: executing significant prefix of Linux boot

sequence, on an FPGA platform, within 6 months %T;Ya\\\j
start of project renitee

37 bluespec

Verification @ Qualcomm

« BSV for complex transactors on EVE platform
« TLM interfaces

. Functions: data transformation, clock management,
timestamp management, statistics management

. and, ... moving testbench functionality to EVE side

HW Side: HDL Simulator or
EVE

W parr —>| bpur
< —
—— |BSV/RTL

\ Transaction Bit-Cycle /‘ PINS
specific interface

accurate interface
Transactions Software API

38 bluespec

It's general purpose and practical
Typical IPs in an SoC ; IPs done in BSV (with good QoR)

Models of:
‘M‘II}TLSSC" processor IDCT, IFFT
Itanium DRAM DES, AES
SRAM PowerPC CIECAM, Motion compensator
ARM MPEG-4, H.264,

802.11xx, OFDM, MIMO Bluespec SystemVerilog (BSV)

DSP/ AL
accelerators Y ™

Memory

Processor

Controller

L2 cache ctir
Distribyted cache cohprence ~ DDR2 ctir

SRAM ctir

Bus converters

System Bus

Network proc Complex

Queuing engines
Application Sorting queue Datapaths
PP Arbiter

Specific

Bus
Bridge

DMA Power
Controller Management

(e.g. Control
processor/
DMA ctir controller)

IP lookup
Debug controller

Peripheral Bus

APB
Serial Bus
Controller Controller C-based
synthesis

PCl Express, USB FIR filter, ~PiXel processor
12C, MIPI HSI, Waveform generator

B Unipro Pong bluespec

Summary: BSV=>» a high level,
disciplined approach to SoC/IP design

Executable spec

Verification IP Design IP/System
TRl ighove Bluespec Tools

Transactional Tr:

ional
niti IIF Initial IP
nitial .
Testbench “ 2pprox) Synthesis &
(approx) Execution at

every step

Bluesim Bluespec

(10X speed) Synthesis

or

o -_ veri Iog
Functionality
Verify/
Analyze/
Debug

High-level Final Bus/
Transactional Interconnect

I/F I/F
Final
Testbench

Strong formal theoretical basis =2

* Composition:modules 2 IPs - Systems
* Reuse (IP and Testbenches)

40 * Path to formal verification

Much higher level
than RTL, with
same QoR

Including testbenches,
for fast verification

bluespec

bluespec

End

ESL

SYNTHESIS

