
MultiCore Design:
OpenSPARC T1 & T2

Architecture, OS, Compilers, Tools & 
Open Source Community

Presented by:

Aman Joshi
Director, IC Tools & Solutions
MicroElectronics Division
Sun Microsystems, Inc.

Acknowledgements:
David Weaver, Jhy-chun Wang, Paul Jordan
and others ● OpenSPARC . net



2www.OpenSPARC.net

Agenda

1.Chip Multi-Threading (CMT) Era

2.OpenSPARC Program

3.Open Source T1 Overview

4.OpenSPARC T1, T2, T2 Plus

5.OpenSPARC Core on FPGA

6.Sun's Chip Design Tools & Flows

7.OpenSPARC Simulators

8.Hypervisor & Virtualization

9.Compiler Optimizations and tools

10.Community Participation



OpenSPARC – Dec 2007 – Chicago 3www.OpenSPARC.net

Memory Bottleneck
Relative
Performance

10000

 1
1990  1995  2005 1980

1000

100

10

 1985  2000

Gap

CPU Frequency

DRAM Speeds

CPU -- 
2x Every 2 Years

DRAM -- 2x Every 6 Years

Source: Sun World Wide Analyst Conference Feb. 25, 2003



OpenSPARC – Dec 2007 – Chicago 4www.OpenSPARC.net

“Hitting walls” in Processor Design
● Clock frequency
– frequency increases tapering off, in new 

semiconductor processes 
– high frequencies => power issues 

● Memory latency (not instruction execution speed) 
dominating most application times 

● Processor designs for high single-thread performance 
are becoming highly complex, therefore:
– expense and/or time-to-market suffer
– verification increasingly difficult
– more complexity => more circuitry => increased 

power ... for diminishing performance returns



OpenSPARC – Dec 2007 – Chicago 5www.OpenSPARC.net

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

. 
V

A
X

-1
1/

78
0)

  
  

  
  

  
  

  

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX         : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson’s
Computer Architecture: A Quantitative Approach, 
4th edition, 2006

⇒  Sea change in chip 
design: multiple “cores” or 
processors per chip

3X

Source: David Patterson presentation at 
MultiCore Expo, March 2006



6www.OpenSPARC.net

Single Threaded 
Performance

Single Threading 

Thread

Memory LatencyCompute

Time

C C C

Typical Utilization of 
Processor:15–25%

M M M

Up to 85% Cycles Spent Waiting for Memory



7www.OpenSPARC.net

Multi-threaded 
Performance

Hardware Multi-Threading (HMT)
 

 Utilization: Up to 85%*

C MC MC MThread 1

Time

C MC MC M

C MC MC M

C MC MC M

Thread 2

Thread 3

Thread 4

* based on example of UltraSPARC T1 

Memory LatencyCompute



8www.OpenSPARC.net

Chip Multi-Threading (CMT) 

CMP 
(Chip MultiProcessing,

a.k.a. “multicore”)

HMT 
(Hardware

Multithreading)

CMT 
(Chip 

MultiThreading)

n cores per processor m threads per core n x m  threads per processor



OpenSPARC – Dec 2007 – Chicago 9www.OpenSPARC.net

Why CMT Works 
Goal: “100% Resource Utilization” 
             (given a fixed die size)

20% Maximum
Size of Each Core

●SPARC T1: 4 threads per core
● Increases core die area by ~20%
● Improves performance by 50–100%

0.5

1

10

2 Single-Core, Multi-Thread

Multi-Core, Multi-Thread

Single-Core, Single-Thread

R
el

at
iv

e 
Pe

rf
or

m
an

ce
 o

n 
th

re
ad

- r
ic

h
 

m
em

or
y-

bo
u

n
d 

w
or

kl
oa

ds



OpenSPARC – Dec 2007 – Chicago 10www.OpenSPARC.net

Major shift in processor design
● FROM  single-thread performance 
– ever-increasing clock rate 
– IPC (e.g. superscalar, out-of-order) and ILP (Instruction Level 

Parallelism) - high power consumption
– cross-CPU communication through bus/memory
– running a single OS

● TO  multi-threaded performance 
– high thread count (TLP)
– high throughput
– high efficiency (performance/power)
– high inter-CPU(strand) bandwidth
– virtualization and multiple guest OSs 



11www.OpenSPARC.net

The Tidal Wave of CMT is Building

2003 2004 2005 2006 2007
0

5

10

15

20

25

30

35

40

45

50

55

60

65

2 2
4 4 4

1 2

32 32

64

1 1 2 2
4

1 1 2 2
4

Threads per Processor (chip)

IBM Power Sun UltraSPARC     Intel x86 AMD x64

4C 1T

8C
4T

8C
8T

8C
4T

4C 1T
2C 1T2C 1T 2C 1T 2C 1T 2C 1T

4C 1T2C 1T 2C 1T
4C 1T4C 1T



12www.OpenSPARC.net

OS & Compilers Playing “Catch up” 

● A tiny handful of Operating Systems scale well to 
hundreds of threads*
– generally, those previously used for 100+ processor SMPs 

● Most only scale up to a few (4-8) threads
– generally, those previously targeted at desktop systems

● Improving auto-parallelization
– to automatically fork threads to take advantage of 

CMT

● Need more work on both 
● totally automatic parallelization
● parallelization with directives (e.g. OpenMP) 

* including Solaris



13www.OpenSPARC.net

Applications Playing “Catch up” 

● Application software is generally waaaay behind the 
CMT curve

● Good news:
many Java apps are inherently multi-threaded

● Mediocre news:
smarter compilers will help many apps

● Bad news:
● some apps require rewriting to perform well in the 

CMT age
● most programmers aren’t used to thinking in terms 

of executing concurrent threads



14www.OpenSPARC.net

Academic Curricula Opportunities

● Train students in software implications of CMT & 
multi-core architectures on:
– operating system design
– compiler/tools design
– application design

● Train processor architects on real-world tradeoffs
– performance/complexity vs. power consumption
– performance vs. time to market!

– additional performance only worthwhile if it can be 
implemented quickly enough
– 1 month delay trades away ~5% of performance

– Verification takes twice the time/effort/$ of design
– so make the design easier to verify 



OpenSPARC Program



16www.OpenSPARC.net

World's First Open Source Microprocessor

• Governed by GPL (2)
• Complete chip architecture
• Register Transfer Logic (RTL)
• Hypervisor API
• Verification suite and 

architectural models
• Simulation model for Solaris 

bringup on s/w
• 14 million lines of code

OpenSPARC.net 



17www.OpenSPARC.net

Get  the Source ... Start Innovating!

Innovate anywhere – 
within it or outside it

Things you can do:
- use as is
- add/delete threads
- add/delete cores
- add new instructions
- change or add FPUs
- add custom coprocessors
- add video/graphics
- add network interface
- change memory interface
- change I/O interface
- change cache/mem interface
- etc...

IO BUS

C4C3C2C1

L2$ BankL2$ BankL2$ BankL2$ Bank

Crossbar

20 GB/s read/write bandwidth 

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

C8C7C6C5

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

L2$ Bank L2$ Bank L2$ Bank L2$ Bank

Memory
Controller

Memory
Controller

Memory
Controller

Memory
Controller

16B @ 333 MT/s

16B @ 200Mhz
3.2GB/s peak, 2.5GB/s effective

Crossbar

DDR2 DIMM DDR2 DIMM DDR2 DIMM DDR2 DIMM

4 threads per core

3MB L2$

System Interface
Buffer Switch Core

FPU



18www.OpenSPARC.net

Innovation
will happen everywhere

OpenSPARC momentum: >7000 downloads 

Innovation Happens Everywhere



OpenSPARC – Dec 2007 – Chicago 19www.OpenSPARC.net

OpenSPARC community achievements

• Single core (S1) design released by Simply RISC based 
in Italy (less than 6 months of effort)

• David Miller ported Linux in less than 6 weeks to T2000 
system

• Cadence uses OpenSPARC for  benchmarking of two 
generation of hardware accelelrators

• John Hennessy and David Patterson's fourth edition of 
“Computer architecture” book  includes section on T1

• UCSC professor Jose Renau released 65nm synthesis 
results

• Collaborative effort on RAMP (build 1000 core system)
• > 7000 downloads.



20www.OpenSPARC.net

Cool tools for SPARC systems

• GCC for SPARC Systems 
• Simple Performance Optimization Tool
• Automatic Tuning and Troubleshooting Tool

http://cooltools.sunsource.net/

http://cooltools.sunsource.net/


OpenSPARC T1 
Processor Overview



22www.OpenSPARC.net

    

• SPARC V9 (Level 1) 
implementation

• Up to eight 4-threaded cores  
(32 simultaneous threads)

• All cores connected through 
high bandwidth (134.4GB/s) 
crossbar switch

• High-bandwidth, 12-way 
associative 3MB Level-2 
cache on chip

• 4 DDR2 channels (23GB/s)

• Power : < 80W 
• ~300M transistors 

• 378 sq. mm die

1 of 8
Cores BUS

C8C7C6C5C4C3C2C1

L2$L2$L2$L2$

Xbar

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

FPU

UltraSPARC T1 Processor 

Sys I/F
Buffer Switch

Core



23www.OpenSPARC.net

CMT: On-chip = High Bandwidth

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

32-thread 
OpenSPARC T1 Processor 

Direct crossbar interconnect

-- Lower cost
-- better RAS
-- lower BTUs,
-- lower and uniform latency,
-- greater and uniform bandwidth. . .

PP
PP
PP
PP

Mem Ctlr

Mem Ctlr

Mem Ctlr

Mem Ctlr
I/OSw

it
ch

32-thread 
Traditional SMP System
Example: Typical SMP Machine Configuration One motherboard, no switch ASICs

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Sw
itch

XB
ar

L2
L2
L2
L2



24www.OpenSPARC.net

CMT Pays Off with CoolThreadsTM Technology

*See disclosures

Sun Fire T2000

● Up to 5x the performance
● As low as 1/5 the energy 
● As small as 1/4 the size

Sun Fire T1000



25www.OpenSPARC.net

UltraSPARC-T1:  Choices & Benefits
• Simple core (6-stage, only 11mm2 in 90nm), 1 FPU  

→ maximum # of cores/threads on die
→ pipeline built from scratch, useful for multiple 
generations
→ modular, flexible design ... scalable (up and down) 

• Caches, DRAM channels shared across 
cores 
→ better area utilization 

• Shared L2 cache 
→ cost of coherence misses decrease by order of 
magnitude
→ enables highly efficient multi-threaded software

• On-die memory controllers 
→ reduce miss latency

• Crossbar switch 
→ good for b/w, latency, functional verification 

For reference:   in 90nm technology, included 8 cores, 32 threads, and only dissipate 70 W



26www.OpenSPARC.net

UltraSPARC-T1 Processor Core
● Four threads per core

● Single issue 6 stage pipeline

● 16KB I-Cache, 8KB D-Cache
> Unique  resources per thread

> Registers
> Portions of I-fetch datapath
> Store and Miss buffers

> Resources shared by 4 threads
> Caches, TLBs, Execution Units
> Pipeline registers and DP

● Core Area = 11mm2 in 90nm
● MT adds ~20% area to core

     IFU

    EXU

     MUL

       TRAP

    MMU              LSU



27www.OpenSPARC.net

UltraSPARC T1 Processor Core Pipeline

Fetch
Thread
Select Decode Execute Memory Writeback

ICache
Itlb

Inst
buf x 4

DCache
DTLB
Stbuf x 4

Decode

Reg file
 x4

Thread selects

Thrd
Sel
Mux

Thrd
Sel
Mux

PC logic 
    x 4

Thread
select 
logic

Instruction type
misses
traps & interrupts
resource conflicts

Crossbar
Interface

Alu
Mul
Shft
Div

Crypto Accelerator

...blue units are replicated per thread on core

1 2 3 5 64



OpenSPARC – Dec 2007 – Chicago 28www.OpenSPARC.net
December 1, 2007

OpenSPARC T2
A Highly Threaded
Open Source 
Server-on-a-Chip
64 Threads in “Huron” system

OpenSPARC T2 Plus
T2 + Coherence support 
for upto 2+ sockets in a system
128 Threads in “Maramba”



OpenSPARC – Dec 2007 – Chicago 29www.OpenSPARC.net

OpenSPARC T2 Chip Goals

• Double throughput versus OpenSPARC T1
> Doubling cores versus increasing threads per core
> Utilization of execution units

• Improve throughput / watt
• Improve single-thread performance
• Improve floating-point performance
• Maintain SPARC binary compatibility



OpenSPARC – Dec 2007 – Chicago 30www.OpenSPARC.net

UltraSPARC T2 Overview • 8 SPARC cores, 
8 threads each, 
64 threads total

• Shared 4MB L2, 
8 banks, 
16 way associative

• Four dual-channel 
FBDIMM memory 
controllers

• Full 8x9 crossbar 
connects cores to 
L2 banks / SIU and 
vice versa

• SIU connects I/O to 
memory

• T2+ removed 2 
MCUs and NIU and 
adds SMP 
Coherency

L2 Data
Bank 0

SPARC
Core 0

SPARC
Core 1

SPARC
Core 5

SPARC
Core 4

L2 Data
Bank 1

L2 Data
Bank 4

L2 Data
Bank 5

L2 Data
Bank 7

L2 Data
Bank 6

L2 Data
Bank 3

L2 Data
Bank 2

L2B0

L2B1

L2B2

L2B3

L2B5

L2B4

L2B6

L2B7

SPARC
Core 2

SPARC
Core 3

SPARC
Core 7

L2
TAG2

L2
TAG3

L2
TAG7

L2
TAG6

L2
TAG0

L2
TAG1

L2
TAG5

L2
TAG4

MCU0

MCU1

MCU2

MCU3

DMU

PEU

RTX

RDP TDS

CCXS
II

S
IO

CCU

N
C

U

E
F

U

SPARC
Core 6

MACFSR

FSR

FSR

PSR ESR

UltraSPARC T2 Die Photo



OpenSPARC – Dec 2007 – Chicago 31www.OpenSPARC.net

OpenSPARC T1 to T2 Core Changes

• Increase threads from 4 to 8 in each core
• Increase execution units from 1 to 2 in each core
• Floating-point and Graphics Unit in each core
• New pipe stage:  pick

> Choose 2 threads out of 8 to execute each cycle

• Instruction buffers after L1 instruction cache for each 
thread

• Increase set associativity of L1 instruction cache to 8
• Increase size of fully associative DTLB from 64 to 128 

entries 
• Hardware tablewalk for ITLB and DTLB misses
• Speculate branches not taken



OpenSPARC – Dec 2007 – Chicago 32www.OpenSPARC.net

OpenSPARC T1 to T2 Chip Changes

• Increase L2 banks from 4 to 8
> 15 percent performance loss with only 4 banks and 64 threads

• FBDIMM memory interface replaces DDR2
> Saves pins
> Improved bandwidth

> 42 GB/sec read
> 21 GB/sec write

> Improved capacity (512 GB)

• RAS changes (to match T1 FIT rate)



OpenSPARC – Dec 2007 – Chicago 33www.OpenSPARC.net

Core Power Management

• Minimal speculation
> Next sequential I$ line prefetch
> Predict branches not-taken
> Predict loads hit in D$
> Pick independent instructions after loads
> Hardware tablewalk search control

• Extensive clock gating
> Datapath
> Control blocks
> Arrays

• External power throttling
> Add stall cycles at decode stage



OpenSPARC – Dec 2007 – Chicago 34www.OpenSPARC.net

Core Reliability and Serviceability

• Extensive RAS features
> Parity-protection on I$, D$ tags and data, ITLB, 

DTLB CAM and data, store buffer address
> ECC on integer RF, floating-point RF, store buffer 

data, trap stack, other internal arrays

• Combination of hardware and software 
correction flows
> Hardware re-fetch for I$, D$
> ECC inside the core is corrected by software



OpenSPARC – Dec 2007 – Chicago 35www.OpenSPARC.net

What’s Available – for SW Engineering
● Architecture and Performance Modeling 

Package, including:
● SAS – Instruction-accurate SPARC Architecture 

Simulator (includes source code)
● SAM – SPARC instruction-accurate full-system 

simulator (includes source code)
● Solaris Images for simulation:  Solaris 10, 

Hypervisor, OBP
● Legion – SPARC full-system simulation model for 

Software Developers (includes source code)
● Hypervisor source code
● Documentation



OpenSPARC – Dec 2007 – Chicago 36www.OpenSPARC.net

What’s Available – other sources

• OpenSolaris  (OpenSolaris.org)
• Linux ports for T1-based systems:

> Ubuntu
> Gentoo
> Wind River Linux
> FreeBSD

• “Simply RISC” processor design based on OpenSPARC 
(SRisc.com)

• New Hennesey & Patterson book, Chap 4
• ...etc...



OpenSPARC – Dec 2007 – Chicago 37www.OpenSPARC.net

High

High

Large

Medium

FPGA Implementations



OpenSPARC – Dec 2007 – Chicago 38www.OpenSPARC.net

FPGA Implementation

• Initial version released May 2006
(on OpenSparc.net website) 
> full 8-core, 32-thread 

> First-cut implementation; 
not yet optimized for Area/Timing

> Synplicity scripts for Xilinx/Altera FPGAs

• Reduced version released Mar 2007 – Release 1.4
> Single-core, single-thread 

> Reduced size TLB

> Optimizations for Area



OpenSPARC – Dec 2007 – Chicago 39www.OpenSPARC.net

OpenSPARC FPGA Implementation

• Single core, single thread implementation of T1
> Small, clean and modular FPGA implementation

> About 39K 4-input LUTs, 123 BRAMs (synplicity on 
Virtex{2/2Pro/4})

> Synchronous, no latches or gated clocks
>  Better utilization of FPGA resources (BRAMs, Multiplier)

> Functionally equivalent to custom implementation, 
except
> 8 entry Fully Associative TLB as opposed to 64 entry
> Removed Crypto unit (modular arithmetic operations)



OpenSPARC – Dec 2007 – Chicago 40www.OpenSPARC.net

Implementation Results
• XC4VFX100-11FF1152 FPGA

> 42,649/84,352 LUT4s (50%)
> 131/376 BRAM-16kbits (34%)
> 50MHz operation

> Have not attempted any faster

> Synplicity Synthesis: 25 minutes  
> Place and Route: 42 minutes

(Microblaze & Related Logic)



OpenSPARC – Dec 2007 – Chicago 41www.OpenSPARC.net

Preliminary Virtex5 Results

• Virtex5 xc5vlx1 10tff1 136 
> Same as FPGA in RAMP Bee3 board

• 30,508 6-input LUTs used out of 69,120 (44%)

• 119 used out of148 BRAM-36kbits (80%) 
> Working through mapping issues…   

• 50MHz placed and routed design
> Have not attempted any faster



OpenSPARC – Dec 2007 – Chicago 42www.OpenSPARC.net

FPGA Reference Design

• ml410 board with Virtex4-100 FPGA (aka ml411)
> Bit file and elf is stored on CompactFlash card

• Each design is a hardware implementation of one regression 
suite test
> Microblaze soft-core sends the test packets to the OpenSPARC core 

and verifies the return packets



OpenSPARC – Dec 2007 – Chicago 43www.OpenSPARC.net

High

High

Large

Medium

Operating Systems



OpenSPARC – Dec 2007 – Chicago 44www.OpenSPARC.net

Solaris on UltraSPARC T1

• Solaris 10 (and beyond) run on UltraSPARC T1&T2

• Run on top of Hypervisor (“sun4v”) layer

• Fully supported by Sun and OpenSolaris



OpenSPARC – Dec 2007 – Chicago 45www.OpenSPARC.net

Linux Ports to date

• Sun T1000 support putback to kernel.org
> Bulk of support for UltraSPARC/OpenSPARC T1

> putback by David Miller, approx Dec 2005

> in 2.6.17 Linux kernel 

> runs on top of Hypervisor

• Full Ubuntu distribution  (announced ~Spring 2006)

• Gentoo Distribution  (announced August 2006)

• Wind River Linux  (announced October 2006)
> “carrier-grade” Linux, notably for Telecom applications



OpenSPARC – Dec 2007 – Chicago 46www.OpenSPARC.net

*BSD on OpenSPARC T1

• FreeBSD port for UltraSPARC T1 
announced Nov 2006

• Other *BSD ports are underway



OpenSPARC – Dec 2007 – Chicago 47www.OpenSPARC.net

OpenSPARC.net:  Find Cool Tools

• Your resource for 
developer tools – FREE !
> GCC

SPARC systems 
highly optimized

> SPOT 
Simple Performance 
Optimization Tool

> RST Trace  
> ATS 

Automatic Tuning System

And – 
Share your tools with the 
community at this site



OpenSPARC – Dec 2007 – Chicago 48www.OpenSPARC.net

Medium

OpenSPARC Community
and Governance



OpenSPARC – Dec 2007 – Chicago 49www.OpenSPARC.net

OpenSPARC Community Groups

Chip Designers

Hardware IP Suppliers

EDA Vendors

CMT Tools

Academia/Universities

Operating Systems

Benchmarking
Reference flow
FPGA
Emulation
Verification
Physical Design
Multi-threaded tools

Architecture, ISA, VLSI course work
Threading, Scaling, Parallelization
Benchmarks

PCI cores, SERDES etc.

Compilers, Threading
Optimization
Performance Analysis

OpenSolaris,
Linux, BSD variants,
Embedded OSs

SoC designs, Hard macros
Telecom applications



OpenSPARC – Dec 2007 – Chicago 50www.OpenSPARC.net

OpenSPARC Grows the Community
• Simply RISC “S1”

> Single-core version of UltraSPARC T1
> Targets small embedded devices
> Runs Solaris and Linux
> Design also released under GPL
> Upgraded to v1.5 of T1 & FPGA downloads 

available

• Allows Sun to grow the SPARC community 
by virtue of having great technology and not 
by handing out money

http://www.srisc.com

“Due to the collaborative nature of the GPL license
Simply RISC plans to add new features to the S1 Core
and test them extensively over the next months with
the help of the community.”



OpenSPARC – Dec 2007 – Chicago 51www.OpenSPARC.net

OpenSPARC Governance Board

• Initial Advisory Board announced Sept 2006
> 3 Community members:

> Nathan Brookwood, industry analyst (Insight64)
> Jose Renau, Univ. of California at Santa Cruz
> Robert Ober, Fellow, CTO Office, LSI Logic

> 2 members from Sun:
> Simon Phipps, Chief Open-Source Officer
> David Weaver, Sr. Staff Engineer, UltraSPARC Architecture

• Governance Board
> Advisory Board became initial Governance Board Jan’07
> New Board to be elected from Community



OpenSPARC – Dec 2007 – Chicago 52www.OpenSPARC.net

OpenSPARC Contest

• The OpenSPARC Community Innovation Awards Contest 
> Part of Sun's $1 Million Open Source Community Innovation 

Awards Program, 
> $175,000 of the $1 Million total prize.

• The OpenSPARC Contest awards categories and award 
amounts are as follows:

   * A. Grand Prize: $35,000 (+ $20K for category award)
   * B. First Prizes: ($20,000 each category)
• Please read details on www.opensparc.net



OpenSPARC – Dec 2007 – Chicago 53www.OpenSPARC.net

OpenSPARC Arch Tools Download 
• SAM: SPARC Architecture Model: instruction-accurate 

SPARC full-system simulator
• SAS/NAS: instruction-accurate SPARC arch. Simulator
• Rstracer: a loadable trace module
• Binary images for simulation: Solaris 10, Hypervisor, 

OBP, etc
• Legion: SPARC full-system simulator for firmware and 

software development
• Hypervisor source code
• Documentation



OpenSPARC – Dec 2007 – Chicago 54www.OpenSPARC.net

Correlate With Cycle-Aware Module 

stepi

stepc

query/update
arch state

stepi

SAM
Cycle-aware
module

● Use SAM's loadable module mechanism
● Create callback functions between modules
● Cycle-aware module maintains cycle-related state



Virtualization:

The sun4v Operating Environment

(or)

“Your OS on the T1 Hypervisor”



OpenSPARC – Dec 2007 – Chicago 56www.OpenSPARC.net

Virtual Machine for SPARC

• Thin software layer between OS and 
platform hardware

• Para-virtualised OS

• Hypervisor + sun4v interface
• Virtualises machine HW and isolates OS from 

register-level
• Delivered with platform not OS
• Not itself an OS

SPARC hardware

Hypervisor

Solaris

User
App

sun4v  virtual 
machine 0

stable interface “sun4v”

User
App

OpenBoot

Other OS

User
App

sun4v  virtual 
machine n

User
App...



OpenSPARC – Dec 2007 – Chicago 57www.OpenSPARC.net

Logical Domains

Hardware

Hypervisor

LDom 1

Solaris 10

CPU

Mem

LDom 2

Solaris 10

LDom 3

Solaris Next

Zone 1Zone Zone 2

Shared CPU, 
Memory, IO I/O

App

• Partitioning capability
> Create virtual machines 

each with sub-set of 
resources

> Protection & Isolation 
using HW+firmware 
combination App

App

App

App

App
App

App

CPU CPU CPU

Mem Mem



58www.OpenSPARC.net

Why Hyperprivileged Mode?

• Allows running multiple simultaneous guest OSs
> (and/or multiple versions of the same OS)

• Allows running older OS (that uses hypervisor API) on 
newer hardware, without need to port the OS

• Simplifies OS ports  (Linux in 2 months!)

• Allows implementation of logical domains (LDOMs)
• Allows virtualization



59www.OpenSPARC.net

Why Virtualization?

• Insulates higher levels of software from underlying 
hardware, by adding another software abstraction layer
> Protects customers' investment in application software from 

changes in underlying software (OS)
> Buying new, faster HW no longer requires running a new 

version of the OS 

• Allows ability to "oversubscribe" resources (run multiple 
top-level software)



OpenSPARC – Dec 2007 – Chicago 60www.OpenSPARC.net

Basic Principles

• Ability to rebind virtual 
resources to physical 
components at any time

• Minimal state held in 
Hypervisor to describe 
guest OS

• Never trust Guest OS 

Virtual
CPU

Physical
CPU

(strand)

sun4v / API
Slip-plane



OpenSPARC – Dec 2007 – Chicago 61www.OpenSPARC.net

Legacy SPARC execution mode

Privileged
Mode

User
Mode

interrupts & errors

system
calls

Retry

• Older sun4u chips  (UltraSPARC I, II, III, IV)



OpenSPARC – Dec 2007 – Chicago 62www.OpenSPARC.net

New SPARC Execution mode

Hyper-
Privileged

Mode

Privileged
Mode

User
Mode

interrupts 
& errors

hypervisor 
calls

Retry

system
calls

Retry

Retry

interrupts 
& errors



OpenSPARC – Dec 2007 – Chicago 63www.OpenSPARC.net

New SPARC Execution mode

Virtual Machine
Environment

Hyper-
Privileged

Mode

Privileged
Mode

User
Mode

interrupts 
& errors

hypervisor 
calls

Retry

system
calls

Retry

Retry

interrupts 
& errors



OpenSPARC – Dec 2007 – Chicago 64www.OpenSPARC.net

Virtualization on UltraSPARC T1/T2

• Implementation on UltraSPARC-T1
> Hypervisor uses Physical Addresses
> Supervisor* sees 'Real Addresses' – a PA abstraction
> VA translated to RA, and then to PA. 

Niagara(T1) MMU and TLB provides h/w support. 
> Up to 8 partitions can be supported. 

3-bit partion ID is part of TLB translation checks
> Additional trap level added for hypervisor use

* supervisor = privileged-mode software = operating system
    (for example, Solaris, Linux, *BSD, ...)



OpenSPARC – Dec 2007 – Chicago 65www.OpenSPARC.net

Translation hierarchy

Physical Addressing
Hyper-privileged

LevelPartition IDN bit Context ID+ +

Real Addressing
Privileged

Level64bit Context ID+

Virtual Addressing
User Level

64bit

Virtual Machine
Environment



OpenSPARC – Dec 2007 – Chicago 66www.OpenSPARC.net

Address space control

Physical Address MapDom A: Real Map Dom B: Real Map

• Hypervisor limits access to memory and devices --
creating partitions (logical domains)



OpenSPARC – Dec 2007 – Chicago 67www.OpenSPARC.net

Translation Storage Buffers

• Guest OS managed cache of translations stored in memory
> Guest allocates memory for buffer
> Guest places translation mappings into buffer when 

needed
> Hypervisor fetches from this cache into TLBs

• Guest specifies virtual -> real mappings
> Hypervisor translates real->physical to load into TLB
> TLB holds virtual -> physical mappings

• Multiple TSBs used simultaneously for multiple page sizes 
and contexts



OpenSPARC – Dec 2007 – Chicago 68www.OpenSPARC.net

Virtual I/O devices

• Provided via Hypervisor
> e.g. Console - getchar / putchar API calls
> Hypervisor generates virtual interrupts



OpenSPARC – Dec 2007 – Chicago 69www.OpenSPARC.net

Physical I/O devices

• PCI-Express root complex mapped into real address 
space of guest domain

• Direct access to device registers
> OBP probes and configures bus and devices

• I/O Bridge and I/O MMU configuration virtualized by 
hypervisor APIs
> Ensures that I/O MMU translations are validated by hypervisor
> Device interrupts are virtualized for delivery



OpenSPARC – Dec 2007 – Chicago 70www.OpenSPARC.net

Logical Domaining Technology
• Virtualization and partitioning of resources

> Each domain is a full virtual machine, with a dynamically 
re-configurable sub-set of machine resources, and its own 
independing OS instance

> Protection & isolation via SPARC hardware and Ldoms firmware

Platform
Hardware

LDom A LDom B LDom C LDom D

I/O

Memory

CPUCPU CPU CPU CPU CPU CPU CPU

Memory Memory Memory

Linux FreeBSD

LDoms
Hypervisor

OS Environment
of choice

I/O



OpenSPARC – Dec 2007 – Chicago 71www.OpenSPARC.net

Virtualized I/O

Logical Domain A

Hypervisor

I/O
Bridge

Nexus Driver
/pci@B

Device Driver
/pci@B/qlc@6

PCI
Root

I/O MMU

Service Domain

Virtual Nexus I/FHyper 
Privileged

Privileged

Hardware

PCI B

Domain Channel

App

Virtual Device
Driver

App
App

App

Virtual Device
Service



•Virtual (Block) Disk device & server

Logical Domain 
2

V-Disk
Driver

Logical Domain 
3

V-Disk
Driver

Logical Domain 
1

App

V-Disk
Driver

Hyper-
visor

Service 
Domain

Virtual SAN 1

Virtual SAN 2

I/O Bridge

FC-AL
I/F

V-Disk
Bridge

V-Disk
Bridge

Device-
Driver

App

App
App

App

App
App

App

App

App



•Redundancy; Multi-path virtual I/O

Logical Domain 2

App

V-Ether
Driver

Logical Domain 
3

V-Ether
Driver

I/O Bridge

V-Ether
Switch

Service 
Domain2

Gb
Ethernet I/F

Virtual LAN 1: 192.168.0/24

Virtual LAN 1b: 192.168.0/24

Device-
Driver

I/O Bridge

Service 
Domain1

Gb
Ethernet I/F

V-Ether
Switch

Device-
Driver

V-Ether
Driver

App

App

App

App App

• Virtualised devices can be used for redundant 
fail-over if guest OS supports it



OpenSPARC – Dec 2007 – Chicago 74www.OpenSPARC.net

Domain Manager

• One manager per host HyperVisor
> Application that controls Hypervisor and its LDom

• Exposes external CLI & XML control interfaces

• Maps Domains to physical resources
> Constraint engine
> Heuristic binding of LDoms to resources

> Assists with performance optimisation
> Assists with handling failures and blacklisting



OpenSPARC – Dec 2007 – Chicago 75www.OpenSPARC.net

Dynamic Reconfiguration

• Hypervisor has ability to dynamically shrink or 
grow LDoms upon demand

• Simply add/remove cpus, memory & I/O
> Ability to cope with this without rebooting depends 

on guest OS capabilities
> Guest OS indicates its capabilities to the domain 

manager

• Opportunity to improve utilisation by balancing 
resources between domains



OpenSPARC – Dec 2007 – Chicago 76www.OpenSPARC.net

Summary

• Specifications & code published:
> http://www.opensparc.net
> http://www.opensolaris.net

• “Legion” instruction level simulator available to 
assist with code development
> Provides level of code execution visibility not 

possible on actual hardware
> Source code available on http://www.opensparc.net

• Contact alias:
> hypervisor@sun.com



OpenSPARC T1

Compiler Optimizations



OpenSPARC – Dec 2007 – Chicago 78www.OpenSPARC.net

Traditional vs. Aggressive CMT

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

Mem. accesses per 1000 app. instrns.

P
er

fo
rm

an
ce

 (
m

ill
io

ns
 o

f a
pp

. i
ns

tr
ns

. /
 s

ec
)

IV+/2T

Thic
ke

r l
in

es
 in

dic
at

e 
m

ore
 

th
re

ad
s.

IV+/1T
T1/1T T1/4T

T1/8T

T1/32T

T1/16T

Parallel workloads – 
High TLP, Low ILP

Serial workloads – 
Cacheable, Low TLP

High ILP/
in-cache

 Low ILP/
out-of-cache

Aggressive CMT 
Optimization Target

Traditional 
Optimization Target



OpenSPARC – Dec 2007 – Chicago 79www.OpenSPARC.net

Designing for ILP vs. TLP
ILP =Instruction Level Parallization
TLP=Thread Level Parallization

• Want to build a CPU with ~10BIPS capability?

• Option A
❑ Build a superscalar dual-core design
❑ Run the chip at 2.5GHz
❑ Look for 1-2 threads with an IPC of 4-2@2.5GHz

• Option B
❑ Build a 1-issue 8 core, 32-thread design
❑ Run the chip at 1.25GHz
❑ Look for 8-32 threads with an  IPC of 1-0.25@1.25GHz

Rare in most codes

Much easier to find



OpenSPARC – Dec 2007 – Chicago 80www.OpenSPARC.net

Basic Optimization

• An easy (naïve) start:
> $ cc foo.c

> No optimization (or very limited optimization)

• A little better
> $ cc -O foo.c

> Optimization turned on at default level

• Even better
> $ cc -xO4 foo.c

> Optimization turned on at a high level

• What next?

Optimization Bag

Comm. Sub. Elim.
Dead Code Elim.
Loop 
Transformations
Instruction 
scheduling
Register allocation
Invariant hoisting
Peephole
.............



OpenSPARC – Dec 2007 – Chicago 81www.OpenSPARC.net

Guiding/Controlling Optimizations

• Numerous advanced optimizations in the compiler
• Controls exist to leverage/guide most optimizations

> Inlining, inter-procedural analysis, profile feedback, 
alias analysis, target system selection, prefetching, 
pragmas/directives ....

• Significant benefits can be obtained by carefully 
selecting and tuning available optimizations

• Compiler also provides a “-fast” single switch

$ cc -xO4 -xinline=foo,no%bar -xprefetch_level=3 \
        -xchip=ultraT1 program.c

Besides -O4, suggests that routine foo() be inlined and bar()
not be inlined in program.c, turns on aggressive prefetching,
and targets the T1 chip.



OpenSPARC – Dec 2007 – Chicago 82www.OpenSPARC.net

Parallelization: Automatic
• Compiler does the parallelization automatically

> Just use the -xautopar option
> No other user action required

• Automatic parallelization targets loop nests
> Works synergistically with loop transformations
> Steadily improving - handles many complex cases now

• Thread count controlled by environment variable
• Two versions generated (if profitability cannot be 

statically determined)
> Run time selection between serial and parallel versions
> Serial version used if work/thread is too low



OpenSPARC – Dec 2007 – Chicago 83www.OpenSPARC.net

Parallelization: OpenMP

• It is an industry standard (www.openmp.org)
> Supported by a large number of compilers
> OpenMP code is portable
> Directives can be ignored for serial/unsupported systems

• Requires little programming effort
> Can start with just a handful of directives
> Applications can be parallelized incrementally

• Good performance and scalability possible
> Depends ultimately on the code, compiler, and system
> CMT-friendly shared-memory parallelism leveraged



OpenSPARC – Dec 2007 – Chicago 84www.OpenSPARC.net

Analyzing & Improving Binaries

• BIT - A tool that operates reliably on binaries
• Can instrument and collect information for analysis
• Can create a new binary with improved performance

> Focusses on rearranging code to better use the I-cache
> Works best on large, complex applications

• Build with
> Option -xbinopt=prepare
> Use -O1 or higher optimization level



OpenSPARC – Dec 2007 – Chicago 85www.OpenSPARC.net

Simplifying Performance Optimization

• SPOT – A Simple Performance Optimization 
Tool
> Produces a report on a code's execution
> Exposes common causes of performance loss
> Very easy to use

• SPOT reports contain hyperlinked profiles
> Makes it easy to navigate from performance issue to 

source to assembly
> For maximum information

> Add -g (-g0 for C++)
> Use -O1 or higher
> Include -xbinopt=prepare



OpenSPARC – Dec 2007 – Chicago 86www.OpenSPARC.net

Embracing OpenSPARC/gcc Users

• Many developers use gcc
> Want to use the same compiler for different platforms
> Use gcc language extensions
> Familiar with & feel comfortable with gcc
> Migration to Studio is, or is viewed as being, difficult

Would be nice to bring the features of Studio to GCC users!



OpenSPARC – Dec 2007 – Chicago 87www.OpenSPARC.net

Making the Connection

gcc
front-end

IR
generator

IPO

Parallelizer

Optimizer

Code Generator

Link time optimizer

Binary optimizer

TOOLS

Studio
front-end

 GCC for
 SPARC
 Systems



OpenSPARC – Dec 2007 – Chicago 88www.OpenSPARC.net

Key Features

• Transparent to gcc users
> Feature compatible with gcc
> Debuggable with gdb and dbx

• Improved performance
> Through advanced optimizations tuned to SPARC 

systems
> Extra optimizations such as -xipo, -xprefetch, -xprofile

• Higher reliability



OpenSPARC – Dec 2007 – Chicago 89www.OpenSPARC.net

Summary
• A rich collection of compilers and tools is 

available to OpenSPARC developers 
> Components are thread-aware and work 

synergestically
> Reliable, with advanced optimizations and 

parallelization
> Excellent multi-threaded analysis and debugging 

tools

• These tools are all free and can be downloaded 
from:

             http://cooltools.sunsource.net



OpenSPARC 
Community Participation



91www.OpenSPARC.net

OpenSPARC participation 

• Community Registration: 
> http://www.sunsource.net/servlets/Join After registration and 

confirming password, you can join the mailing lists: 
http://www.sunsource.net.servlets/ProjectMailingListsList

• Forums: 
> http://forum.java.sun.com/category.jspa?categoryID=120 

(separate registration required for posting) 

http://www.sunsource.net/servlets/Join
http://www.sunsource.net.servlets/ProjectMailingListsList
http://forum.java.sun.com/category.jspa?categoryID=120


92www.OpenSPARC.net

OpenSPARC participation

• Add your university (or company)  to the marketplace:     
http://www.opensparc.net/community-marketplace/        

• Send us your profile and we'll post it: 
http://www.opensparc.net/profiles/

• Add yourself to our Frappr!!: 
http://wwwopensparc.net/frappr.html

• Contribute to our OpenSPARC Book: 
http://wiki.opensparc.net/bin/view.pl/Main/Webhome       
(separate registration required for editing)

http://www.opensparc.net/community-marketplace/
http://www.opensparc.net/profiles/
http://wwwopensparc.net/frappr.html
http://wiki.opensparc.net/bin/view.pl/Main/Webhome

