
Efficient Use of Multicore Processors

For Timing Analysis

Dr João Geada

 CLK Confidential & Proprietary

Contents

!! A brief overview of goals

!! Parallelization patterns and applicability

"! Pipelining

"! Latency hiding

"! Dataflow

!! Anti-patterns

!! The devil in the details

!! Final thoughts

 CLK Confidential & Proprietary

Brief Overview of Goals

!! What do we mean by efficient?

"! Wall clock time !!!

!! Goal is to make a timing run take as little wall clock time as possible

"! Multi threads, multi core

"! Acceptable to sacrifice some CPU time for gains in wall clock

!! Minimal impact to memory

!! Results must always be predictable and repeatable

"! For any timing mode:

#! STA, SSTA, SI, non-SI, transistor, reports

#! Flat, hierarchical, full, incremental

"! For any run environment:

#! Number of CPUs, threads, order of execution

 CLK Confidential & Proprietary

Traditional timing tool

!! System setup

"! Read libraries

"! Read design

"! Read parasitics

"! Read and apply SDC

!! Evaluate timing model

"! Compute arrivals, constraints, violations

!! Report results

"! Report paths

S
e
q
u
e
n
tia

l T
c
l s

c
rip

t

 CLK Confidential & Proprietary

Multicore timing tool

Parse SDC Process

SDC

Parallel timing

Report Path generator

SPEF parse

Read Verilog

Read library

 CLK Confidential & Proprietary

Pipelining

Decompress queue Parse queue Construct

Pattern applicable to parsers: each stage is inherently sequential, but does not

need to wait for completion of succeeding/preceding stage. Can resource balance
by adding more threads to slow stages.

thread safe

queue

thread safe

queue

 CLK Confidential & Proprietary

Latency Hiding

read_parasitics

more

Tcl/sdc

<join>

SPEF

use

parasitics

Pattern applicable

whenever multiple tasks
are done sequentially but

output of some of the tasks
is not normally observable

until later.

Tcl/sdc

 CLK Confidential & Proprietary

Dataflow

Traversal

arc

results

solver

Thread safe queue

Thread safe queue

solvers cannot

acquire locks that
may be held by

other solvers!!!

Pattern applicable to graph traversals

 CLK Confidential & Proprietary

AntiPatterns

!! Partitioning

"! Generally

easy

t

o do, good performance for small number of additional cores

"! Difficult to do for large

num

b

er of cores, highly coupled problems (for example SI timing) !

"! Partitioning overhead ultimately affects scaling

!! Using multicore aware math libraries

"! Affects too little of the runtime

"! Negatively impacts other

more

eff

 CLK Confidential & Proprietary

Lessons learned

!! Even a single misplaced instruction can kill

performance

"! One instruction accounted for 30% performance!

!! Locks are deadly to performance

"! But essential for correctness when needed

!! Correct architecture is vital

"! Minimize required locks

"! Guarantee data properties

 CLK Confidential & Proprietary

Lessons learned

!! Engineers are not trained to use threads

"! Take us about 3 months to bring a new hire up to speed

"! Need to take a very disciplined approach to coding

!! State of thread oriented software tools is immature

"! Few tools in general for threading

#! Performance

#! Memory behavior and correctness

#! Data debugging

"! Few threaded building blocks available

!! For now, you *will* have to construct your own tools and
components to extract the most from multicore CPUs

 CLK Confidential & Proprietary

Final Thoughts

!! Amdhal’s Law is not your friend

"! On an average

timin
g
 run Amber spends more time reading input files than running timing

"! As soon as you effectively thread

something, the
4-16x performance boost makes something else the critical problem

!

Inp
u
t file formats used in timing not easily amenable to parallelized IO

"! Standard formats are serial in nature (liberty, SPEF, SDC, ...)!

"! As an industry we need to start paying more attention to this

"! Tackling IO by providing thread

aware
inc
remental database allows for multiple order of magnitude speed ups

!! Existing threading primitives are very primitive, and making
thread

 CLK Confidential & Proprietary

Why do multicore/threading?

 CLK Confidential & Proprietary

8 way scaling advantage

STA Analysis

40M Instances

1M Instance

Block ECO

50

40

30

20

10

0
STA Analysis

40M Instances

1 Corner

SI MMMC

4M Instances

25 Corners

Signal Integrity

9M Instances

1 Corner

Full Chip Incremental

700K Cell Swap

1 Corners

STA

7.5 M Instances

1 Corners

Over

Night

Over

Lunch

Incumbent prior release

Incumbent B

In
c
u

m
b

e
n

t B

33
hrs In

c
u

m
b

e
n

t

48
hrs

In
c
u

m
b

e
n

t

48
hrs

18
hrs

In
c
u

m
b

e
n

t

24
hrs

15
hrs

12
hrs A

m
b

e
r ‘0

7

7
hrs A

m
b

e
r

‘0
7

3
hrs 2

hrs

8
hrs A

m
b

e
r

‘0
7

CLKDA Amber ‘07

In
c
u

m
b

e
rt

22
hrs

Incumbent curr release

A
m

b
e

r

‘0
8

5
hrs

1 hr

3.5
hrs 1.8

hrs
50

mins

6
hrs

CLKDA Amber ‘08

