Efficient Use of Multicore Processors
For Timing Analysis

Dr Jodo Geada

Contents

(]

A brief overview of goals

(]

Parallelization patterns and applicability
» Pipelining
» Latency hiding
» Dataflow

L

Anti-patterns
The devil in the details
Final thoughts

(N

CLK Confidential & Proprietary

Brief Overview of Goals

O What do we mean by efficient?
> Wall clock time !!

O Goal is to make a timing run take as little wall clock time as possible
> Multi threads, multi core
» Acceptable to sacrifice some CPU time for gains in wall clock

U Minimal impact to memory

U0 Results must always be predictable and repeatable
> For any timing mode:
. STA, SSTA, SI, non-Sl, transistor, reports
- Flat, hierarchical, full, incremental
> For any run environment:
. Number of CPUs, threads, order of execution

CLK Confidential & Proprietary

Traditional timing tool

0 System setup
» Read libraries
» Read design
» Read parasitics

» Read and apply SDC

1duos |9] |enuanbag

U0 Evaluate timing model

» Compute arrivals, constraints, violations
O Report results

» Report paths

CLK Confidential & Proprietary

Multicore timing tool

|

Read library ||

Read Verilog

N R

—
Process Parse SDC SPEF parse
SDC

Parallel timing

L— 1

Path generator W

CLK Confidential & Proprietary

Pipelining

Decompress II 1 Parse IMI Construct

thread safe thread safe
queue queue

Pattern applicable to parsers: each stage is inherently sequential, but does not
need to wait for completion of succeeding/preceding stage. Can resource balance
by adding more threads to slow stages.

CLK Confidential & Proprietary

Latency Hiding

Tcl/sdc
Pattern applicable *
whenever multiple tasks
are done sequentially but
output of some of the tasks 1
is not normally observable
until later.

read_parasitics

more
Tel/sdc SPEF

m

use
parasitics

CLK Confidential & Proprietary

Dataflow

E—

arc

Thread safe queue

Traversal
) solver

:I‘ solvers cannot

I acquire locks that
results may be held by
Thread safe queue other solvers!!!

Pattern applicable to graph traversals

CLK Confidential & Proprietary

AntiPatterns

Q Partitioning
» Generally
easy

t
o do, good performance for small number of additional cores

» Difficult to do for large

num
b
er of cores, highly coupled problems (for example Sl timing)

» Partitioning overhead ultimately affects scaling

U Using multicore aware math libraries

> Affects too little of the runtime

. . CLK, Confj tial & P iet
> Negatively impactsother oo

more
off

Lessons learned

O Even a single misplaced instruction can Kill
performance

» One instruction accounted for 30% performance!
O Locks are deadly to performance
» But essential for correctness when needed

L Correct architecture is vital
» Minimize required locks

» Guarantee data properties

CLK Confidential & Proprietary

Lessons learned

QO Engineers are not trained to use threads
» Take us about 3 months to bring a new hire up to speed
» Need to take a very disciplined approach to coding
U State of thread oriented software tools is immature
» Few tools in general for threading
= Performance
= Memory behavior and correctness
= Data debugging
» Few threaded building blocks available

O For now, you *will* have to construct your own tools and
components to extract the most from multicore CPUs

CLK Confidential & Proprietary

Final Thoughts

Q Amdhal’s Law is not your friend

» Onan average

timin

g

run Amber spends more time reading input files than running timing
» As soon as you effectively thread

something, the

4-16x performance boost makes something else the critical problem

Inp
u
t file formats used in timing not easily amenable to parallelized 10

» Standard formats are serial in nature (liberty, SPEF, SDC, ...)
» As an industry we need to start paying more attention to this

» Tackling IO by providing thread

aware
inc CLK Confidential & Proprietary

remental database allows for multiple order of magnitude speed ups
U Existing threading primitives are very primitive, and making

Why do multicore/threading?

Amber Timing Performance on 4M instance industrial desig!

132

78

Relative Performance

CLK Confidential & Proprietary

8 way scaling advantage

50
= Incumbent prior release
(| Incumbent curr release
40 = Incumbent B
B cLkDAAmber 07
B cLKDAAmber 08
30 = =
> >
o o
c c
3 3
o o
@ [0) —
3 3 3
20 = = =
El =
Over 3 8
Night = bl @ g.
10 S
Over
Lunch= -
0
STA Analysis STA Analysis SI MMMC Signal Integrity Full Chip Incremental STA
40M Instances 40M Inst 4M Inst: 9M Instances 700K Cell Swap 7.5 M Instances
1 Corner 1M Instance 25 Corners 1 Corner 1 Corners 1 Corners
Block ECO

CLK Confidential & Proprietary

