
Tuning EDA flows (using TCL)
Patrick Groeneveld

Chief Technologist, Magma Design Automation
EDP 2008 - Monterey

18 April, 2008 – Patrick Groeneveld - 2

Summary: Tuning EDA flows using TCL

• The Good:
• TCL Enables well-integrated tool suites

• The Bad:
• TCL is Easily chaotic, not fast, not pretty

• The Ugly:
• The real problem is somewhere else!

18 April, 2008 – Patrick Groeneveld - 3

From RTL to GDS2 in a single executable

RTLRTL

CDFG Net list of Super Cells

RoutingRouting

Mask layoutMask layout

Placement

P.G. 4

Blast Rail power analysis steps in magma flow

Floor planning

Activity annotation &Activity annotation &
propagationpropagation

Power AnalysisPower Analysis

Current & voltage dropCurrent & voltage drop
calculationcalculation

Power infrastructure
generation (rails, mesh)

RTL synthesis

Rail network extractionRail network extraction

Voltage drop
and EM textual

reports

net listnet list

floor plan with orfloor plan with or
without placed gateswithout placed gates

Physical synthesis
and optimization flow

Voltage drop inducedVoltage drop induced
delaydelay

VCD
file

Library
data

Voltage & current sources, Voltage & current sources,
resistancesresistances

Power
consumption

report

Slews from Slews from
the builtthe built--in in
timer/extractortimer/extractor

P.G. 5

Complex tool interactions without disk access

Static Static
timing timing

analysisanalysis

Power Power
analysisanalysis

Talus
R

TL-to-G
D

S
Physical Synthesis

DC DC VdropVdrop
analysisanalysis

ThermalThermal
analysisanalysis

MultiMulti--VDDVDD
Islands,Islands,
backbiasbackbias

ClockClock
gatinggating

AutoAuto--
PowergridPowergrid

MultiMulti--VtVt

Transient Transient
VdropVdrop

analysisanalysis

DecapDecap
insertioninsertion

PowerPower--
placementplacement

ActivityActivity
analysisanalysis

Library &Library &
SiliconSilicon

analysisanalysis

NetworkNetwork
analysisanalysis

RCRC
xtorxtor

My view on Interoperability
and standardization

(Not necessarily Magma’s official view)

MIX and MATCH does not work!

• Plug = easy (formats are not so relevant)
• Play = hard (What does it mean? how does it perturb the flow?)

• I’m in the ‘play’ business
• Standardization may have it used, but its not here!

Open
Access

tool

tool

tool

tool

Cadence

Unified
Data

Model
tool

tool

tool

tool

Milky
Way

tool

tool

tool

tool

Magma Synopsys

RTL

GDS2

RTL

GDS2

RTL

GDS2

General architecture

Tool x..

Placem
ent

Global router

Buffering

Cloning

Track router

D
etailed router

Tool y..

D
etailed placer

Incremental Timer
Parasitic extraction/modeling

TCL interface
Command window/ scripts

GUI
(java)

mtcl> data get
mtcl>

.lib, lef
def, GDSII
Verilog, etc.

External formats

TCL conversion
script

Native

volcano

Disk image

netsnets
cellscells wireswires

pinspins Library dataLibrary data

Design rulesDesign rules

mantle.exe

MTCL: access to data model through TCL
• Full access to the data model is provided through TCL
• Every object is uniquely ‘addressable’ by a text string.
• This addresses cell ‘gate744’ in model ‘display’:

mtcl> set c /work/display/display/cell:gate744

library
entity

model
Name of the cell

• This would list the nets in model $m:

mtcl> data list model_net $m
/work/display/display/net:clock1, /work/display/display/net:enable,..

• This deletes a net:

mtcl> data delete object /work/display/display/net:clock2

MTCL: addressing rectangles
• The millions of physical objects can be uniquely addressed by their

coordinates in the string

100n 300n 150n 50n METAL1 routing /work/display/display/net:n1244

Left
Bottom

Width
Height

layer
layer type

‘owner’ of this box

100 250
300
350

Metal 1 wire
of net n1244

500n 700n 150n 50n METAL3 segment /work/display/display/net:n1244

100n 300n 10n 10n . outline /work/display/display/cell:c32

Cell c32 (and its
placement)

Metal 3 global
routing segment of

the net n1244

Getting the wires in a window

• This is based on the KDTREE area query. The complexity of the layer
structure and the hierarchy is hidden behind this iterator.

GEO::RECT window(0, 0, 10000, 10000);
BS::MODEL::WIRE_ITER wit(model->basalt(), window);
GEO::RECT rect;
while (wit.next(&rect) != BS::NOT_A_LAYER) {

BS::WIRE * wire = wit.wire(); // 0 if virtual
wire->print();

}

mtcl> set window “0 0 100u 100u”
mtcl> data loop b “model_box –window $window” $m {

puts $b
}

TCL: the good and the bad

• The good:
–Easy to learn and comprehend
–Deep integration with data model

• The bad:
–Slow compared to python
–No easy integration of binary tools
–Does not encourage clean code
–A single typo can kill a run.

18 April, 2008 – Patrick Groeneveld - 13

The anatomy of a Physical Synthesis flow

Timing closure (parasitic cap.)Timing closure (parasitic cap.)

Tim
ing analysis

Tim
ing analysis

Parasitic extraction &
 estim

ation
Parasitic extraction &

 estim
ation

IRIR
-- drop and Pow

er analysis
drop and Pow

er analysis
D

R
C

/ER
C

D
R

C
/ER

C

SynthesisSynthesis

PlacePlace

RouteRoute

Gate sizing Gate sizing

Cloning, logic restructuring Cloning, logic restructuring

Load buffering Load buffering

Delay buffering Delay buffering

Timing/sizing driven placement Timing/sizing driven placement

Mapping for speed Mapping for speed

Useful skew clock synthesis Useful skew clock synthesis

Routing closureRouting closure

Congestion control Congestion control

RipRip--up and reroute up and reroute

Design scale, concurrent designDesign scale, concurrent design Hierarchy, Partitioning, design planningHierarchy, Partitioning, design planning

Large capacity and fast algorithms Large capacity and fast algorithms

CorrectCorrect--byby--construction tools construction tools

TestabilityTestability

BIST insertion BIST insertion

Scan chain reordering and routing Scan chain reordering and routing

ECO capabilityECO capability

Spare cell insertion Spare cell insertion

Clock skewClock skew

Balanced clock trees Balanced clock trees

Clock shielding Clock shielding

DualDual--hierarchy supporthierarchy support

Low power requirementsLow power requirements

Clock gating Clock gating

MultiMulti--VDD regions VDD regions

Dual Dual VtVt support support

IR voltage drop, IR voltage drop, ElectromigrationElectromigration

Power infrastructure Power infrastructure

Decoupling caps, package designDecoupling caps, package design

High I/O countHigh I/O count

FlipFlip--chip packaging chip packaging

Antenna rulesAntenna rules

Diode insertionDiode insertion

AntennaAntenna--friendly routing, jumper insertionfriendly routing, jumper insertion
DSM mask rulesDSM mask rules

Filling, slotting, router adaptations Filling, slotting, router adaptations

Crosstalk noise & delayCrosstalk noise & delay

Wire shielding Wire shielding

Wire spacing Wire spacing

Hold time violationsHold time violations

Noise bufferingNoise buffering

Hold time bufferingHold time buffering

Yield, reliability, PVTYield, reliability, PVT

Wire wideningWire widening
Wire spacing Wire spacing Etc. etc. etc.Etc. etc. etc.

Battling parasitic capacitancesBattling parasitic capacitances
Battling wire congestionBattling wire congestion

Block/macro placement Block/macro placement Block/macro placement Block/macro placement

OptimizeOptimize

Magma RTL-to-GDS script in TCL

set m [import set m [import verilogverilog mydesign.vmydesign.v]]

import volcano library.volcanoimport volcano library.volcano

fix fix rtlrtl $m lm $l

fix time $m $lfix time $m $l

fix plan $m $lfix plan $m $l

fix cell $m $lfix cell $m $l

fix clock $m $lfix clock $m $l

fix wire $m $lfix wire $m $l

export volcano export volcano mydesign.volcanomydesign.volcano

export export gdsiigdsii $m $m mydesign.gdsmydesign.gds

check model $m check model $m --level finallevel final

run route stub $mrun route stub $m

run route global $m run route global $m --antennaantenna

run route track $m run route track $m --optimize noiseoptimize noise

run route power $m run route power $m --finalfinal

check route spacing_short $mcheck route spacing_short $m

check route open check route open --segment $msegment $m

run route final $m run route final $m --singlepasssinglepass

run route antenna $mrun route antenna $m

run route refine $mrun route refine $m

run route final run route final --incremental $mincremental $m

check route check route drcdrc mm

18 April, 2008 – Patrick Groeneveld - 15

The truth about physical synthesis

It must deal with many ‘nitty gritty’ details

Synthesis Algorithms do only Synthesis Algorithms do only oneone thing well thing well
Cannot handle multiple objectivesCannot handle multiple objectives
System is easily overSystem is easily over--constrainedconstrained

Algorithms must use Algorithms must use inaccurate modelsinaccurate models ofof
the physical realitythe physical reality

Algorithmic steps do
things that could cause
problems at later steps

We often need to
start over iterate to
recover such errors

Zero toleranceZero tolerance
for sloppinessfor sloppiness

18 April, 2008 – Patrick Groeneveld - 16

The ABC of a well-engineered IC design flow

AA: : AvoidAvoid
Detect specific problem patterns early, fix them Detect specific problem patterns early, fix them

-- Relies on prediction which Relies on prediction which
-- does not have to be extremely accurate.does not have to be extremely accurate.

BB: : BuildBuild
Synthesize using an algorithm on a simplified model.Synthesize using an algorithm on a simplified model.

-- Capture 1st order effect of problem as objective.Capture 1st order effect of problem as objective.
-- Shoot in the ball park, and hShoot in the ball park, and hope for the best.ope for the best.

CC: : CorrectCorrect
Perform accurate analysis, detect remaining problems andPerform accurate analysis, detect remaining problems and
fix any problems by local modifications (ECO).fix any problems by local modifications (ECO).

-- This is typically slow and itThis is typically slow and it
-- might not work. might not work.
-- If its real bad, iterate back to step A or BIf its real bad, iterate back to step A or B

18 April, 2008 – Patrick Groeneveld - 17

Guiding principles during Physical Synthesis

• Stepwise refinement
• Use a number of build steps,

each fixing an objective and
adding detail

• Avoid Correction iteration
like the plague

• Use inaccurate analysis
• Ballpark is enough, You’re far

off anyway
Routing

Optimization

Global routing

Placement

Logic Synthesis

Floorplanning

de
ta

il

18 April, 2008 – Patrick Groeneveld - 18

Converging to a local optimum in a tool flow

Routing
Optimization
Global routing

Placement
Logic Synthesis

Floorplanning

Solution
Cost

18 April, 2008 – Patrick Groeneveld - 19

The EDA flow as a pachinko machine

• Run flow:
• End up an one of the local optima.

• Re-run:
• typically get same results

• (Multi-processing alert!!)
• Re-run with small change

• Could be huge difference
• Changes:

• Irrelevant order changes
• Additional steps/algorithms
• Changing constraints, tuning, etc.

• Good/bad results depend on:
• ‘ease’ of the design
• Flow set-up/tuning
• Design structure (e.g. data paths)
• Coincidence

18 April, 2008 – Patrick Groeneveld - 20

“Only a bad carpenter blames his tools”, NOT

• Tuning of the TCL script
• First time:

• Poor local optimum, mistakes

• Tune flow+data
• Better local optimum.

• But:
• Loop is slow
• Tools talks gibberish
• Result depend too much on

experience of engineer.
• Hacks are design-specific

Run tool
flow

Analyze results

run.tcl Design
data

Timing
report

18 April, 2008 – Patrick Groeneveld - 21

EDA Flow tuning for best out-of-the-box results

• Goal:
• Improving the chance of ending up in a good local

optimum. (that is: move the mean for better QOR)

• That requires:
• Good understanding of cause, actions, side-effects
• Statistical evidence of efficacy

• Issue:
• Effects and side-effects are hard to predict
• How to distinguish design-specific noise from real

improvements?

18 April, 2008 – Patrick Groeneveld - 22

Analogy with the medical field

• New drug
• Biological model of cause,

actions and side-effects

• Develop it
• Test tube test
• Test on animals

• Efficacy,
• side effects

• Clinical trials
• Large double-blind placebo-

controlled tests

• FDA-approval

• New flow component
• Based on electrical/

physical plausability

• Program it (C++/TCL)
• Unit test
• Test on small testcases

• Debug program
• Efficacy, side effects

• Beta test
• Hope that customers use it

• Deployment
• Go for it!

Tim Mattson this morning:
“Engineers: think it, build it, demo it, declare victory”

18 April, 2008 – Patrick Groeneveld - 23

Using skeptical wisdom from the medical field

• Unproven methods are “Quackery”
• Examples: homeopathy, multiprocessor throughput scaling,

chiropractic, structured placement, acupuncture, DFM,
holistic/herbal supplements, plug and play EDA interoperability,
probiotics, etc. etc.

18 April, 2008 – Patrick Groeneveld - 24

Using skeptical wisdom from the medical field (2)

• “Humans are amazingly good at self-deception”
• This looks soooo good, therefore this must work

• “If it has no side effects, it probably has no effects
either”
• Example: improving temperature gradients is gonna cost you!

So is improving yield. Are you really willing to pay based on the
evidence?

• “Do not confuse association with causation”
• “I took this airborne pill, and I did not get sick”
• “I used this DFM optimizer, and the chip yields!

• “The plural of ‘anecdote’ is ‘anecdotes’, not data”
• Result could be a random effect, or another side effect
• No substitute for unbiased placebo-controlled tests
• Only large data sets are statistically relevant

18 April, 2008 – Patrick Groeneveld - 25

Conclusion for EDA: academic view

• Weak empirical academic standards:
• Order of magnitude too few test cases
• Test cases based on artificial data or flows
• Many opportunities for bias

• Reluctance to publish ‘negative results’
• Publication pressure encourages intellectual dishonesty
• Comparisons/field tests are rare (or poor at best)

• Most papers are not trustworthy

18 April, 2008 – Patrick Groeneveld - 26

Conclusion for EDA

• EDA Business view:
• Totally allergic to negative results!
• Too much focus on ad-hoc fixes/features rather than out-of-the-box
• Desire to please customers, rather than fundamentally improve tool.
• Results of secret ‘bake-off’ benchmarks are not fully analyzed

• A more scientific approach
would result in significantly better out-of-the-box
• Find local optimum that’s closer to global one
• Saving serious engineering effort.
• Even given current set of algorithms

