

Circa 2000 ...

Processor Selection Was Biggest Design Challenge

Circa 2008 Designs got a lot tougher

Processor Selection Was Biggest Design Challenge

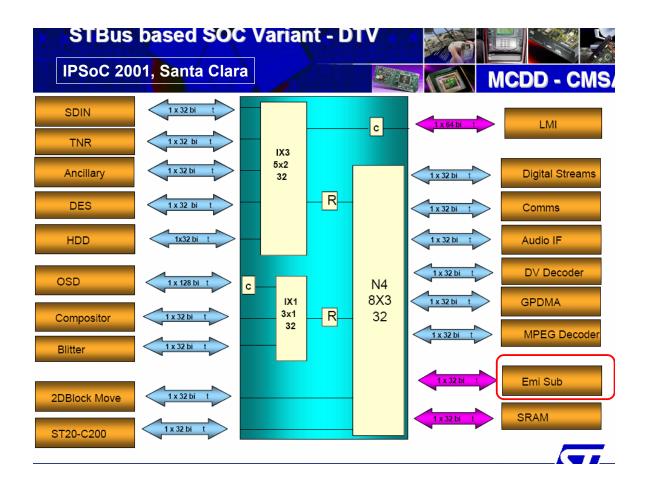
- Good news for my fellow panel members
 - Lots more processors on chip
 - Heaven forbid: ARC, Tensilica, MIPS AND ARM could all co-exist on a single die
 - Driven by tile based design re-use
 - Facilitated by advanced automation techniques and standards based integration flows
- Bad news for my fellow panel members
 - SoC world no longer revolves around the processor

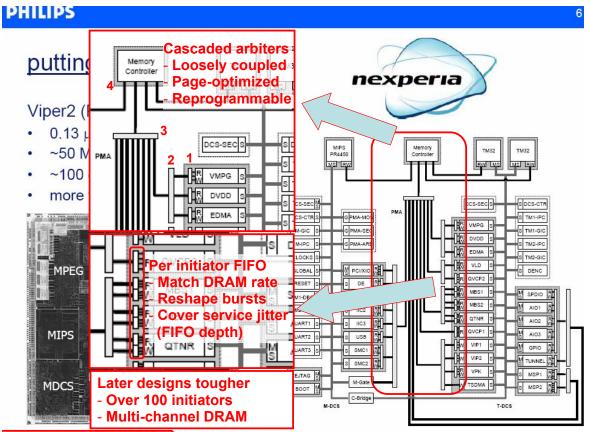
Touch a Couple Examples

- DTV chips
 - What makes them hard to do?
- Application processor chips
 - What are the challenges there?
- Is there a difference?

What Makes DTV SoC's Difficult?

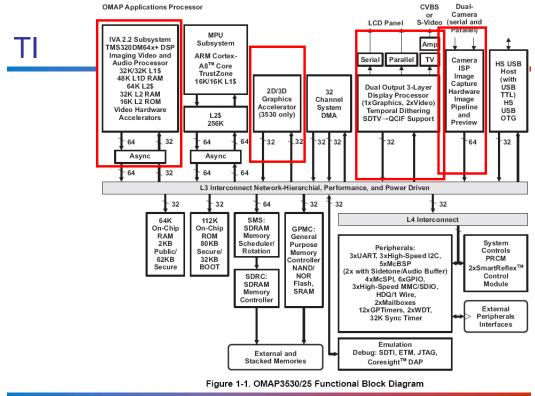
- Multiple channels of multi-format video decoders
 MPEG 2, H.264, ...
- Lots of scaling/resampling requirements
 - PIP, screen sizes, ...
- High-bandwidth image enhancement features
 - Reverse pull-down, 120 Hz, motion judder, ...
- Increasing CPU & graphics acceleration
 - Richer user experience, 2D/3D menus, slide shows, ...
- Wide variety of I/O
 - Video, audio, PC, USB, 1394, Ethernet, WiFi, HDD, ...
- Huge SW challenge to make it all work together in real time: latency sensitivity, isochronous, quasi-isochronous
- All for under \$10!




5

DTV SoC Architecture: DRAM-optimized

- Achieving required functionality and system BOM requires shared memory architecture
- Working set sizes of most subsystems too large for onchip RAM
 - Shared memory is predominately external DRAM
- System performance defined by DRAM performance
 - Optimizing DRAM transfer efficiency, while guaranteeing realtime behavior, is key requirement
 - Memory subsystem dominates DTV SoC architecture
- Most DTV SoC's use in-house interconnects & DRAM controllers
 - Carefully optimized to maximize DRAM performance
 - Tightly coupled to DRAM technology, frequency & configuration



lees Goossens MPSOC 2004-06-08

What Makes Apps Processors Difficult?

- Multiple channels of multi-format graphics
 - Graphics/Video accelerators, 2D/3D, image capture, ...
 - DRAM utilization challenge
- Wide variety of I/O
 - Video, audio, USB, timers, GPIO, I2C ...
- Concurrent management of various tasks while maintaining a 3G cell connection:
 - Watching live TV while receiving an incoming phone call
 - DVB-H radio tuner -- H.264/WMV video decode -- 64-voice polyphonic MIDI ring tone
 - Video conferencing while recording
 - MPEG4 or H.264 video encode and decode -- AAC+ audio encode & decode -- MMC record
 - Over the air synchronization while listening to MP3 songs
 - Synchronization protocol -- MP3/WMA audio playback
- · Incredibly low power
- All for under \$20!

SoC Architecture Summary

- Critical factors:
 - Need highest DRAM transfer efficiency...
 - While ensuring real time requirements are met
 - ... to get to low power FAST!
- Multi-functional accelerators explode the SW complexity
 - Real-time constraints that vary from core to core: latency (asynchronous), synchronous (isochronous and quasi-isochronous) flows
 - Traffic contention at the memory interface that is difficult to predict. Caused by varying data chunk sizes and access methods as well as demanding bandwidth requirements.
 - Error recovery and diagnostic capabilities competing with gate count requirements and in-band timing requirements.
 - Late- or fast-changing market requirements driven by new standards and rapid consumer obsolescence.
- Preservation of IP core re-use
 - Datapath widths, operating frequencies, interface protocols, FIFO sizes, burst lengths, arbitration algorithms

11

What is Needed?

An optimized architecture that allows direct comparison of architectural choices and produces the complete solution:

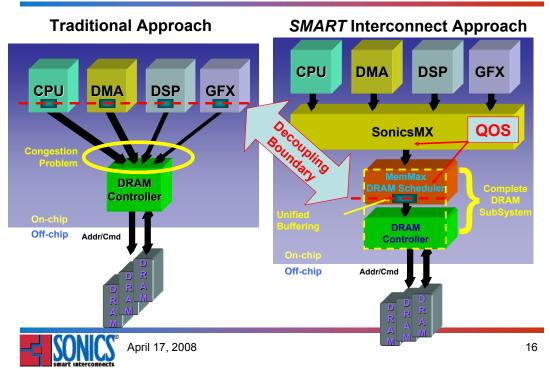
- Accommodate full variety of partitioning approaches and services: active decoupling
- Automation to enable rapid model configuration & optimization
- Re-use of legacy initiators/data flows as a starting point
- Performance tooling to qualify results
- Metrics to determine success:
 - DRAM efficiency while ensuring real time
 - Address pattern dependencies
 - Concurrency requirements
 - etc

Multicore SoC Interconnects Require

- System communications infrastructure as core fabric to achieve the flexibility needed to manage multiple data traffic flows simultaneously
- Advanced Fabric Features that facilitate heterogeneous
 multiprocessing using distributed architectures
- Data Flow Services that minimize new system management challenges that add exponential design load and risk to SoC development

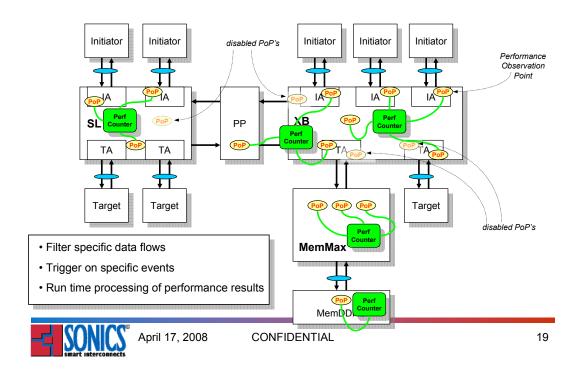
13

Advanced Fabric Features

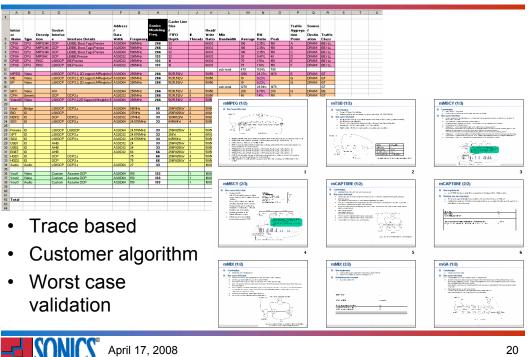

- Increase Performance
 - Non-blocking architecture with networking enables ultra low latency data flows for Multi-core applications
- Maximum IP core Reuse
 - Decoupling IP cores from Interconnect minimizes impact of incremental changes to platform architecture
- Maximum IP Library Flexibility
 - Universal Connectivity (OCP, AHB, AXI, APB)
- Preserves Previous Investments
 - Architecture consistency across Interconnect solutions
- Low Project Risk
 - Ability to model Interconnect during architecture phase of SoC designPerformance tooling to qualify results
 - Metrics to determine success:
 - DRAM efficiency while ensuring real time
 - Address pattern dependencies
 - Concurrency requirements
 - etc

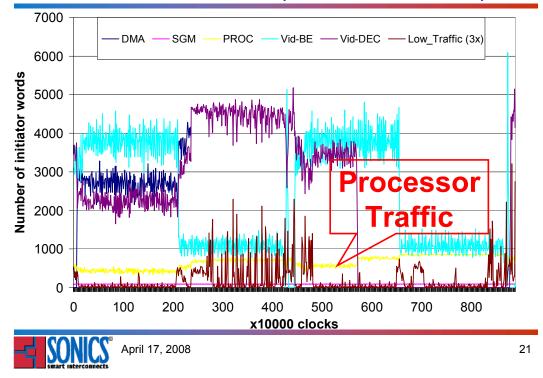
Network-based SoC: Active Decoupling

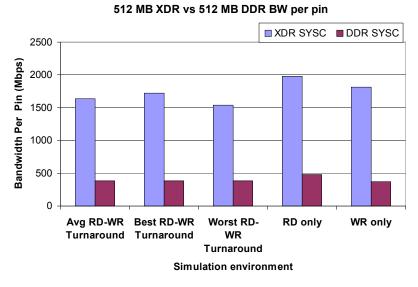
Decoupled Memory Subsystems

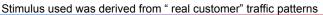

<section-header><complex-block><complex-block><complex-block><complex-block><complex-block>

Application Specific Stimulus

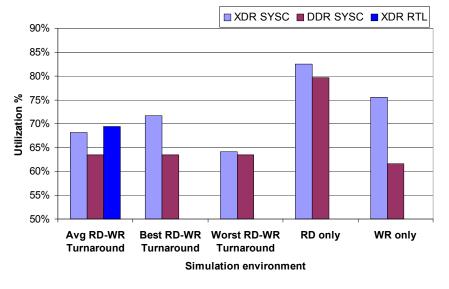

- · Stimulus based on real world video traffic
- Estimated data flows created with spreadsheet
 - Model complex interdependent data flows
 - Simple worst case validation
 - Begin architectural tradeoffs early
- Convert emulator traces to master-side transactions
- Generate traffic and re-play on abstracted models


Performance Instrumentation

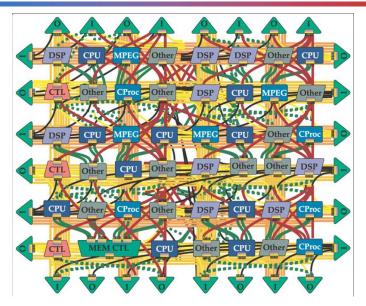

Extensive, Varied Data Sets



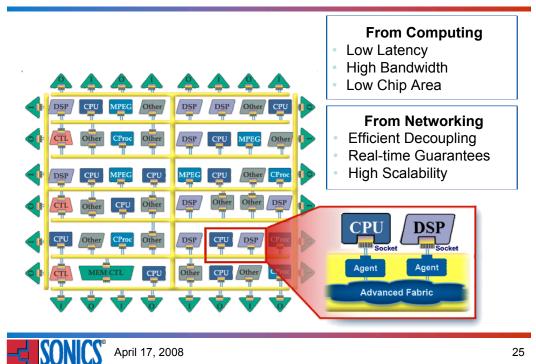
DTV Traffic Pattern (2 Frames Data)


Analysis: XDR vs. DDR-2 for 512MB

Analysis Validates Designs

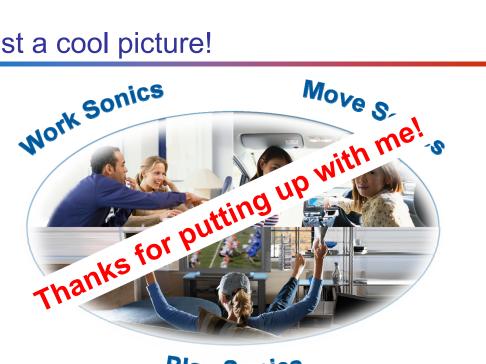


512 MB XDR vs 512 MB DDR BW Utilization Comparison


23

The Old Way

The Sonics Way


Just a cool picture!

Play Sonics

Just a cool picture!

Play Sonics

