Max Out Your Multis
(An Embedded Perspective)

Radhika Thekkath
April 17, 2008

I
I
)

TECHNOLOGIES

© 2008 MIPS Technologies, Inc. All rights reserved

% Sorting out the terminology: multi-threading
and multi-cores

+» Enabling embedded multi-cores

*+ Adding hardware multi-threading to an
embedded processor core

% Maxing out your multis
s Summary

© 2008 MIPS Technologies, Inc. All rights reserved

MIPS

it All Those Words and Terminology

R
“lmmm“s Mmuﬂessors
S

Hetemgenous

i,

9

© 2008 MIPS Technologies, Inc. All rights reserved 3

2! Multiprocessing—Before And Now

“ Multiprocessing is old stuff

= Remember the Sequent, the CM-2, the Exemplar, etc.?
% Are we re-inventing this stuff all over again?
% What are we re-inventing?

¢ Multi-processing in the embedded domain (as
opposed to the desk-top world)

+» Even this is not new: embedded systems have
always required multiple processing units,
host control, audio, video, comm., etc.
+ Single-chip multi-cores: homogeneous core-1
and core-2, video, etc.
= Audio and communication folded into core-1 and core-2

© 2008 MIPS Technologies, Inc. All rights reserved 4

Example 1: a Simplified MIPS-Based ™
SoC for DTV, DVD and STB Designs

TECHNOLOGIES

Video Transport
Decoders Demux

110
Peripherals
And

Front-Ends

MIPS32®

OS & App
Processor

MIPS32®

Audio
Processor

MIPS32®

Security
Processor

~ wese (SEpamyie]) (Customer ip)

© 2008 MIPS Technologies, Inc. All rights reserved 5

451 Embedded Multiprocessing

+ Embedded multiprocessor designs usually
connected point to point or sometimes on a
single bus structure

*+ Evolutionary path leading to...
% Coherent multi-cores

+* With these there is an immediate customer
expectation of 2x or 4x performance gain
= Comes with a substantial increase in die area and power

= Cannot always get this type of performance increase,
very dependent on:
- target application and parallelism obtainable
* Implementation design (competent or poor)

© 2008 MIPS Technologies, Inc. All rights reserved 6

Multi-core SoC—An Example

Cache A Cache B Cache C

Coherency Fabric

Shared 1/O

Shared Memory

© 2008 MIPS Technologies, Inc. All rights reserved 7

45 Embedded Multi-threading

+ Multi-threading: software and hardware
perspectives

+ A software multi-threading architecture can
execute multiple threads on a single CPU with
a single hardware context by context
switching the single hardware resource

+ Hardware multi-threading implements multiple
hardware contexts (registers mostly)

+ Trade-off of some extra hardware for efficiency
*» Focus on hardware-based multi-threading
% Gain in CPU efficiency and task throughput

© 2008 MIPS Technologies, Inc. All rights reserved 8

réi ! Multi-threaded Core—An Example

HW Context
HW Context
HW Context
HW Context
HW: Context

/10

© 2008 MIPS Technologies, Inc. All rights reserved 9

riacs Topics

s Sorting out the terminology: multi-threading
and multi-cores

+» Enabling embedded multi-cores

s Adding hardware multi-threading to an
embedded processor core

s Maxing out your multis
s Summary

© 2008 MIPS Technologies, Inc. All rights reserved 10

r45v] Making SoC-based Multi-cores Possible

% Come-together time for a bunch of ideas and
direction

+ Shrinking process technologies
+ System architectural innovation

+» Micro-architectural and implementation
techniques

+ Adaption of software tools and methodologies
for embedded multi-core implementations

© 2008 MIPS Technologies, Inc. All rights reserved 11

r45-1 Shrinking Process Technologies

< Smaller implies
+* More transistors on a die needed for:
= Logic—implementation multiple everything, pipelines,
functional units, etc.
= Memory—each core needs its own first-level caches,
scratchpad memories, etc. to be effective
+ Dramatic performance advantage in the
short term

= Run multiple task and applications simultaneously—this
is the easiest

= Run multiple threads (parallelize) the application

© 2008 MIPS Technologies, Inc. All rights reserved 12

r45e] System Architectural Innovation

+ Optimization of coherence protocols—not
necessarily related to the embedded world,
but can be useful in certain contexts, e.g., data
delivery short-cuts may be possible in a
single-chip implementation because of some
assumptions about latencies

+» Interrupt protocol and its interaction with the
DMA engine and 1/O block

+ Tracing mechanisms that span system
boundaries

© 2008 MIPS Technologies, Inc. All rights reserved 13

“ll—— Micro-architectural and Implementation
Techniques

** Where did all the cycles go? Reducing the
overhead of coherence protocols
= Tightening up the path through the core to the
coherence manager block and back
+ Lock and sync implementation
= Traveling the same path as data, but for
control purposes
+* Interrupt processing—optimizing for the
embedded application

= Although major components may look similar, the
requirements could be very different compared to the
desktop system

+ Take short-cuts in data delivery—sometimes
take liberties with the coherence protocol

© 2008 MIPS Technologies, Inc. All rights reserved 14

MIFPS

Software Tools for Embedded Multi-cores

% Tools for trace and debug must be enhanced

+ Operating systems must understand the
existence of multiple execution units

+» Tools that can guide users on existing
parallelism in applications

+ Tools that can parallelize applications
+ Performance analysis tools

“ Look at the software track of any popular
symposium (Multi-core expo, ESC, etc.), and
you will trip over dozens of companies with
tools and software offerings

© 2008 MIPS Technologies, Inc. All rights reserved

Topics

s Sorting out the terminology: multi-threading
and multi-cores

*» Enabling embedded multi-cores

*+ Adding hardware multi-threading to an
embedded processor core

s Maxing out your multis
s Summary

© 2008 MIPS Technologies, Inc. All rights reserved

TECHNOLOGIES

Multi-threading—An Example Implementation

SW[0s 1] [0§ 2] Virtual Processing Element

i I i i E i +« Looks like a complete

processor to SW

<+ Can run an OS or other
Hardware Hardware
Context Context

software thread
+ Build-time option: 1 or 2

Quality of Service
+» Schedules resources

Common Hardware between multiple contexts

—

(Fetch, Decode, Execution Unit, Caches)

« Example implementation: MIPS32® 34K® core
++Can run dual operating systems
“*Inherent cache coherency
“Legacy applications run unmodified

© 2008 MIPS Technologies, Inc. All rights reserved 17

rdlise =l Where Do Stalls Go?

A Process 1 | .| Instructions |
Multi- |

threaded | INENENEEN B emory Sta |
processor

Common HW

© 2008 MIPS Technologies, Inc. All rights reserved 18

45! Why Multi-Threading?

>

0

L)

Multi-threading can eliminate or reduce stalls

+ Stalls are a problem: memory latency continues
to be an issue

% Other stalls include:
= Synchronization
= Pipe dependencies
= Long latency operations
+ Higher frequencies imply higher power consumption
—can you do the same work at lower frequencies?
Yes, if you are more efficient
+ Multi-threading enables efficient behavior

+ Power consumption is becoming a real issue with
wired consumer devices like DTVs, STBs, etc. as they
include more functionality and the SoC size grows

0

© 2008 MIPS Technologies, Inc. All rights reserved 19

45l Why Multi-Threading for Applications?

+ Contrast with multi-tasking

= Targets “Application-level parallelism”
» Diverse workloads
« Example: VOIP

= Task imbalances reduce efficiency

Application

Time for 1 Frame

oS
ThreadX

Opportunity L J
Three Hardware Contexts (HC)

© 2008 MIPS Technologies, Inc. All rights reserved 20

riars Topics

s Sorting out the terminology: multi-threading
and multi-cores

*» Enabling embedded multi-cores

s Adding hardware multi-threading to an
embedded processor core

% Maxing out your multis
s Summary

© 2008 MIPS Technologies, Inc. All rights reserved 21

railits! Multi-threaded Multi-Core SoC—An Example

HW: Context HW Context
HW: Context HW: Context
HW. Context CRUA HW Context| CPUB
HW Context HW: Context
HW Context HW Context

Cache A Cache B

Coherency Fabric

Shared I/0

Shared Memory

© 2008 MIPS Technologies, Inc. All rights reserved 22

tébet - Why Multi-threaded Multi-cores?

* Multi-threading and multiprocessing are
complementary techniques

= Combination achieves pipeline and power efficiency with
higher system performance levels—memory efficiency

= Efficiency for the doubled or quadrupled hardware—
leverage the multi-core hardware a step further

= Both use the same parallel programming model, so
software transition is seamless

© 2008 MIPS Technologies, Inc. All rights reserved 23

»<awd Allocating S/W on a Multi-threaded Multi-processor

EEMBC Multi-core Benchmark Suite JPEG Decode — Typical Prelim Results

25

1.5

Performance Multiplier

05 1004K H/W Config:
2 cores, 4 VPEs

Core1 VPE 0| Core1 VPE 0 | Core1 VPE 0 | Core1 VPE 0

Core1 VPE 1| Core1 VPE 1

S/W Contexts on H/W Resources

© 2008 MIPS Technologies, Inc. All rights reserved 24

MIFPS

Summary

% Traditional multi-processing is here in the
embedded, consumer world

¢ In the end, multi-threading and multi-core
designs exist to make memory usage more
efficient

s Combine them to get the power, efficiency,
and performance boost

© 2008 MIPS Technologies, Inc. All rights reserved

25

