
Parallel Programming: Can we PLEASE get it right this time?

1

11

Parallel Programming:
Can we PLEASE do it right this time?

Tim Mattson
Principal Engineer
Applications Research Laboratory
Intel Corp

22

Abstract

The computer industry has a problem. As Moore’s law marches on, we will
be exploiting it to double cores, not frequencies. But all those cores … 2
to 4 today growing to 8, 16 and beyond over the next several years … are
of little value with out parallel software. Where will this parallel software
come from? With few exceptions, only graduate students and other
strange people are willing to write parallel software. Professional
software engineers almost never write parallel software.
Somehow we need to (1) design many core systems programmers can
actually use and (2) provide programmers with parallel programming
environments that work. The good news is we have 25+ years of history
in the HPC space to guide us. The bad news is I don’t think very many
people are paying attention to these past experiences.
In this talk, I look back at the history of parallel computing and develop a
set of rules we must follow if we want to create many core systems that
are actually useful. A common theme is that just about every stupid
mistake we could make has already been made by someone. So rather
than reinvent these mistakes on our own, lets learn from the past and “do
it right this time”.

Parallel Programming: Can we PLEASE get it right this time?

2

33

Disclaimer

The views expressed in this presentation are my
own and do not represent the views of the Intel
Corporation (or its lawyers).

44

Moore’s Law is Going strong

65nm process65nm process
20052005

30nm30nm 20nm20nm

45nm process45nm process
(20 nm Prototype)(20 nm Prototype)

20072007

32nm process32nm process
(15 nm prototype)(15 nm prototype)

20092009

15nm15nm

22nm process22nm process
(10 nm prototype)(10 nm prototype)

20112011

10nm10nm

Source: IntelSource: Intel

3216842Integration Capacity
(BT)

2232456590Technology Node
(nm)

… combined with advanced packaging, we get the
familiar transistor-doubling with each generation

These are projections only and may not be reflected in future products from Intel Corp.

Parallel Programming: Can we PLEASE get it right this time?

3

55

But … Single thread performance is falling off

Historic SPECint 2000 Performance

Year Source: published SPECInt data

66

And power is out of control:
Power (normalized to i486) trends

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Growth in power
is unsustainable
Growth in power
is unsustainable

Source: Intel

Parallel Programming: Can we PLEASE get it right this time?

4

77

Architecture optimized for power:
a big step in the right direction

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Current CPUs
with shallow
pipelines use

less power

Source: Intel

88

Using Multiple cores to reduce power even more

Processor

f

Processor

f/2

Processor

f/2

f

Input Output

Input

Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f Capacitance = 2.2C

Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W.,
"Optimizing power using transformations," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source: K. Keutzer of UCB

Parallel Programming: Can we PLEASE get it right this time?

5

99

General Purpose, Low
Power Cores

Carried to the extreme … a many core future

Special Purpose HW

GP GP

GP

GP GP

GP

GP

GP GP

GP

GP GP

SP SP

SP SP

CC

CC

CC

CC

CC

CC

CC

CC
Scalable on-die network

Heterogeneous Multi-Core Platform … we’re
all doing it (Intel and our competitors)

Heterogeneous MultiHeterogeneous Multi--Core Platform Core Platform …… wewe’’re re
all doing it (Intel and our competitors)all doing it (Intel and our competitors)

This is an architecture concept that may or may not be reflected in future products from Intel Corp.

1010

We’ve made good progress with the hardware:
Intel’s 80 core test chip (2007)

Source: A 80-tile 1.28 TFLOP Network-on-Chip in 65 nm CMOS, ISSCC’07, Sriram Vangal, Jason
Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James tschanz, David Finan, Priya Iyer,
Arvind Singh, Riju Jacob, Shailendra Jain, Sriram venkataraman, Yatin Hoskote and Nitin Borkar.

This is an architecture concept that may or may not be reflected in future products from Intel Corp.

Performance @ 4.27
GHz and 97 Watts

– Peak
1.37 SP TFLOPS

– Explicit PDE solver
1.0 SP TFLOPS

– Matrix Multiply
0.51 SP TFLOPS

•See Backup slides for
more details about this
project

Parallel Programming: Can we PLEASE get it right this time?

6

1111

Software?

Many core systems are useless without software
that can exploit available concurrency.

Can we generate parallel software automatically?

1212

How about automatic parallelization?

0

5

10

15

20

25

30

bz
ip2

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r
tw

olf

vo
rte

x
vp

r

av
era

ge

S
pe

ed
up

 %

Basic speculative multithreading
Software value prediction
Enabling optimizations

A Cost-Driven Compilation Framework for Speculative Parallelization of Sequential Programs,
Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, Tin-Fook Ngai (Intel
Corporation) in PLDI 2004

Aggressive techniques
such as speculative
multithreading help,
but they are not
enough.
Ave SPECint speedup
of 8% … will climb to
ave. of 15% once their
system is fully
enabled.
There are no
indications auto par.
will radically improve
any time soon.
Hence, I do not belive
Auto-par will solve our
problems.

Results for a simulated dual core platform configured as a main core and a core for speculative execution.

Parallel Programming: Can we PLEASE get it right this time?

7

1313

Software?

Our only hope is to get programmers to write parallel
software “by hand”.
Making this happen is the famous “Parallel programming

problem”.

And after 25+ years of research, we are no closer to
solving the parallel programming problem …
Only a tiny fraction of programmers write parallel code.

Will the “if you build it they will come” principle
apply?
– Many hope so, but ..

that implies that people didn’t really try hard enough over the last 25
years. Does that really make sense?

1414

What went wrong during the MPP* era?

Can we do it right this time with multi-core?

Those who cannot remember the past
are condemned to repeat it.

(George Santayana 1863-1952)

*MPP Massively Parallel Processor

The lesson’s from history:

Rules every parallel programming
Environment designer should follow

Parallel Programming: Can we PLEASE get it right this time?

8

1515

Rule 1:

It is far better to have a small number of good
technologies and build on what is in use today rather
than create something completely different and
new.

1616

All you need is a good Parallel Programming Language, right?
Parallel Programming environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

This glut of parallel programming
languages actually hurt the cause of

parallel computing.

Third party names are the property of their owners.

Parallel Programming: Can we PLEASE get it right this time?

9

1717
Pe

rc
en

ta
ge

60

tr
y

40

tr
y

24 6

So is it really bad to have so many languages?

The Draeger Grocery Store experiment
consumer choice :

– Two Jam-displays with coupon’s for
purchase discount.

– 24 different Jam’s

– 6 different Jam’s

– How many stopped by to try samples
at the display?

– Of those who “tried”, how many
bought jam?

The findings from this study show that an extensive array of options
can at first seem highly appealing to consumers, yet can reduce their
subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality
and Social Psychology, 76, 995-1006.

The findings from this study show that an extensive array of options
can at first seem highly appealing to consumers, yet can reduce their
subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality
and Social Psychology, 76, 995-1006.

3

bu
y

30

bu
y

Third party names are the property of their owners.

1818

Parallel Programming API’s today
Choice overload*:

– A glut of options scares consumers (i.e. ISVs) away … Less is More

Today’s major APIs

– Thread Libraries

– Win32 API

– POSIX threads.

– Compiler Directives
– OpenMP - portable shared memory parallelism.

– Message Passing Libraries
– MPI - message passing

– Coming soon … a parallel language for managed runtimes? Java or X10?

We don’t want to scare away the programmers … Only add a new
API/language if we can’t get the job done by fixing an existing

approach.

We don’t want to scare away the programmers … Only add a new
API/language if we can’t get the job done by fixing an existing

approach.
*Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good
thing? Journal of Personality and Social Psychology, 76, 995-1006. Third party names are the property of their owners.

Parallel Programming: Can we PLEASE get it right this time?

10

1919

An example of fixing existing APIs :

nodeptr list, p;

For (p=list; p!=NULL; p=p->next)
process(p->data);

nodeptr list, p;

#pragma omp parallel
{

#pragma omp single
{

for (p=list; p!=NULL; p=p->next)
#pragma omp task firstprivate(p)

process(p->data);
}

}

OpenMP 2.5 can’t deal with a simple pointer following loop

OpenMP 3.0 fixes this by adding a new task construct:

The name OpenMP is the property of the OpenMP Architecture review board

2020

Rule 2:

When developing parallel programming
technologies, work with production level programs
produced by application programmers

Parallel Programming: Can we PLEASE get it right this time?

11

2121

Rule 2 example: HPF

HPF (High Performance Fortran) was created in the
early 90’s by academics to solve important data
parallel problems.

Worked great on toy problems

Was terrible for real applications. Why? They picked
the wrong programming model.
– Even a data parallel algorithm includes task parallel components so

HPF was a nightmare to apply to real applications

Successful technologies that followed rule 2 include OpenMP, PVM,
MPI, and TCGMSG.

The GPGPU inspired rush to resurrect SIMD style programming
models is an example of a modern violation of this rule.

The names MPI, HPF, PVM, TCGMSG, Java and OpenMP are the property of their respective owners

2222

Rule 3:

If the goal is to build a commercially relevant market, industry
must be heavily involved … if not the driver.

Parallel Programming: Can we PLEASE get it right this time?

12

2323

Rule 3 example: MPI 2

MPI 2.0 was defined by the MPI forum, a group dominated
at that time by national lab and academic researchers

Specification completed in April 1997, generally available
conforming implementations, Nov 2004* (MPIch2)
– Academics are fundamentally interested in research agendas, not

building markets!

OpenMP and MPI 1.0 did it right and had implementations
ready when the specs were released.

OpenMP and MPI 1.0 did it right and had implementations
ready when the specs were released.

* This is the date MPIch2 was released. It is true that Pallas did an implementation of
MPI2 for Fujitsu in or around 2002. But this was not available across the industry.

Third party names are the property of their owners.

2424

Rule 4:

Work on the really important problems,
not just your favorite problems.

Parallel Programming: Can we PLEASE get it right this time?

13

2525

Software Issues for many core: Top 10 list

1. Finding concurrent tasks in a program. How to help programmers “think parallel”?
2. Scheduling tasks at the right granularity onto the processors of a parallel

machine
3. The data locality problem: Associating data with tasks and doing it in a way that

our target audience will be able to use correctly.
4. Supporting scalability: hardware - bandwidth and latencies to memory plus

interconnects between processors to support applications that scale.
5. Supporting scalability: software – libraries, scalable algorithms, and adaptive

runtimes to map high level software onto low l platform details.
6. Synchronization constructs (and protocols) that let programmers write programs

free from deadlock and race conditions that scale across the full system.
7. Tools, API’s and methodologies to support the debugging process
8. Error recovery and support for fault tolerance
9. Support for good software engineering practices: composability, incremental

parallelism, and code reuse.
10. Support for portable performance. What are the right models (or abstractions) so

programmers can write code once and expect it to execute well on the parallel
platforms we care about in the market.

Paul Petersen, Arch Robison,
Bruce Leasure, Tim Mattson

2626

But it seems everyone is focused on transactional memory

Transactional memory only addresses a few of the lower
priority problems.

6. Synchronization constructs (and protocols) that let our target
programmers write programs that are free from deadlock and race
conditions but still scale across the full system.

8. Error recovery and support for fault tolerance
9. Support for good software engineering practices: composability,

incremental parallelism, and code reuse.

TM will help, but it won’t be the “game changer” some have
promised.

– R&D resources are roughly fixed … by putting so much into TM, we
are putting less into the more pressing problems.

Parallel Programming: Can we PLEASE get it right this time?

14

2727

Rule 5:

We must stop acting like engineers or worse,
“marketing hacks”.
– Engineers: think it, build it, demo it, declare victory.

– Marketers focus on “cheap pot shots”.

We can only solve the parallel programming problem
by systematic, scientific methodologies.
– Scientist: Think it, hypothesize, build it, test hypothesis,

build a theory, iterate as needed to develop a science of
parallel programming.

2828

Rule 5 example: Sparse matrix vector product
OpenMP

Nested Data Parallel
voi d smvp_csr_double_3 x3mat(double3vec* dst,

double3 x3mat * A,
i nt* cind ,

i nt* rows,
double3 vec* v,

i nt widt h,
i nt height,

i nt nonz eros,
i nt numThreads,
void* pa ttern,

double3 vec* scratch,
i nt* scr atch_int) {

i nt i;
double3 vec* scratch1 = scrat ch;

double3 vec* scratch2 = &(scr atch[M AX(nonzeros,height)]);
double3 vec* scratch3 = &(scr atch[M AX(nonzeros,height)* 2]);

i nt* scr atch_ica st = (int*)scra tch;
i nt baseStripSi ze = nonzeros/ numThreads;

i nt leftoverStri pSize = nonzer os%numThrea ds;
double3 vec incomingar r[MAXPRIMT HREADS];

i nt incomingseg[MAXP RIMTHREADS];
i nt incomingsegs[MAXPRIMT HREAD S];
i nt* segflags=((multipattern*)patter n)->segdesc;

i nt incomingarr _int[MA XPRIM THREA DS];

#pr agma omp par allel num_threads(numThrea ds)

{
#if def _OPENMP

i nt threadId = omp_get_threa d_num();
#el se

i nt threadId = 0;
#endif

i nt lowerBound = threadId*ba seStripSize+(t hreadI d<leftoverStripSize ? t hreadI d : leftoverStri pSize);

i nt upperBound = (threadId+1)*baseStripSiz e+(thr eadId+ 1<leftoverStripSize ? t hreadI d+1 : leftoverStripSiz e);
double3 vec incoming;

i nt incomingsgs = 0;
i nt elt;

i nt front ier;
i nt seghits = 0;

i nt seghit = segflags[l owerBound];
i nt incoming_int = 0;

i ncoming[0] = 0 .0;
i ncoming[1] = 0 .0;
i ncoming[2] = 0 .0;

i f ((upperBound != nonzeros) && (segflags[upperBound]))

seghi ts = 1;
/ * Fused Local Phase 1 Inner Product + Local Reduction*/

matrixvector3x3x1_multiply(scratch1[lowerBound], A[lowerBound], v[cind[lowerBound]]);
f or (elt = lower Bound+1; (elt < upper Bound) && (elt < nonz eros); elt ++) {

if (segflags[e lt]) {
ma trixvect or3x3 x1_mul tiply(scratch1[elt], A[e lt], v[ci nd[elt]]) ;

seghit = T RUE;
seghits++ ;

} else {

ma trixvect or3x3 x1_mul tiply(scratch1[elt], A[e lt], v[ci nd[elt]]) ;
vector3x1 _add(scratch2[elt],scr atch2[elt-1],scratch1[elt-1]);

}
}

/ * SegR eduction Globa l Phase */
#pr agma omp bar rier

i ncomingsegs[t hreadId] = seghits;
i ncomingseg[threadId] = seghi t;

i f (threa dId) {
vector3x1_a dd(incomingarr [threadId],scra tch2[lowerBound-1], scratch1[lower Bound- 1]);

} else {

incomingarr[t hreadI d][0] = 0;
incomingarr[t hreadI d][1] = 0;

incomingarr[t hreadI d][2] = 0;
}

i ncoming[0] = i ncomingarr[thr eadId][0];
i ncoming[1] = i ncomingarr[thr eadId][1];

i ncoming[2] = i ncomingarr[thr eadId][2];
i ncomingsgs = i ncomingsegs[t hreadI d];

s eghit = FALSE;
#pr agma omp bar rier

f rontier = 1;
while (fr ontier < numT hreads) {

if (thr eadId >= front ier) {
if ((!incomi ngseg[t hreadId - front ier]) && !seghi t) {

vector3 x1_add(incomi ng,incomingarr [threadId],incomingarr [threadId-frontier]);
}

incomings gs = incomings egs[thr eadId] + incomingsegs[threa dId - frontier];
}

if (incomings eg[threadId - f rontier])
seghit = T RUE;

fronti er <<= 1;
#pr agma omp bar rier

incomingarr[t hreadI d][0] = i ncoming[0];

incomingarr[t hreadI d][1] = i ncoming[1];
incomingarr[t hreadI d][2] = i ncoming[2];

incomingsegs[threa dId] = incomingsgs;
#pr agma omp bar rier

}

s eghit = segfla gs[lowerBound];

i ncomingsgs = (threadI d ? incomingsegs[threadId-1] : 0);
for (elt = lowerBound; (elt < upperB ound) && (elt < nonzeros); elt ++) {

if ((e lt == nonzeros-1) || s egflags [elt+1]) {
if (!seghit) {

vector 3x1_addinplace(scratch3[incomingsgs],incomingarr [threadId]);
vector 3x1_addinplace(scratch3[incomingsgs],scra tch2[elt]);

vector 3x1_addinplace(scratch3[incomingsgs],scra tch1[elt]);
} else {

vector 3x1_addinplace(scratch3[incomingsgs],scra tch2[elt]);
vector 3x1_addinplace(scratch3[incomingsgs],scra tch1[elt]);

}
incomingsgs++;

seghit = TRUE;
}

}

baseStri pSize = height /numT hreads;
l eftover StripSi ze = hei ght%numThreads;

l owerBound = t hreadI d*baseStripSiz e+(threadId<leftover StripSiz e ? threadId : l eftover StripSi ze);
upperBound = (threadI d+1)*baseStri pSize+(threadI d+1<leftover StripSiz e ? threadId+1 : leftoverStri pSize);

((int*)scratch2)[lowerB ound] = 0;

s cratch_ icast[upperBound-1] = (rows [upper Bound- 1] == r ows[upperBound] ? 0 : 1);

f or (elt = lower Bound+1; (elt < upper Bound)&& (elt < height); elt ++) {

scratch_icast [elt-1] = (rows[elt-1] == rows[elt] ? 0 : 1);
((int*)scratch2)[elt] = (((int*)scratch2)[elt- 1] + scr atch_icast[elt- 1]);

}

#pr agma omp bar rier
i f (threa dId)

incomingarr_ int[threadId] = ((int*)s cratch2)[lower Bound- 1]+scr atch_icast[lowerBound-1];
e lse

incomingarr_ int[threadId] = 0;
#pr agma omp bar rier

i ncoming_int = incomingarr_int[threa dId];
f rontier = 1;
while (fr ontier < numT hreads) {

if (thr eadId >= front ier) {
incoming_i nt += i ncomingarr_int[threa dId - fr ontier];

}
fronti er <<= 1;

#pr agma omp bar rier
incomingarr_ int[threadId] = incomi ng_int;

#pr agma omp bar rier
}

((int*)scratch2)[upperB ound-1] += incomingarr_int[threadI d];
#pr agma omp bar rier

i f (threa dId) {
incomingarr_ int[threadId] = ((int*)s cratch2)[lower Bound- 1]+scr atch_icast[lowerBound-1]; / * barrier above guara ntees t he dst i sn't rea d until after it's updat ed */

for (el t = lowerBound; (elt < upper Bound- 1) && (elt < hei ght); el t ++) {

((int*)scrat ch2)[el t] += incomingarr_int[threadI d];
if (scratch_icast[e lt])

vector3 x1_copy(dst[el t],scrat ch3[((int*)scra tch2)[el t]]);
}

if (scr atch_icast[upperBound-1])
vector3x1 _copy(dst[upperBound-1],scr atch3[((int*)scratch2)[upperB ound-1]]);

} else { /* threadId != 0 */
for (el t = lowerBound; (elt < upper Bound) && (elt < height); elt ++) {

if (scratch_icast[e lt])

vector3 x1_copy(dst[el t],scrat ch3[((int*)scra tch2)[el t]]);
}

}
} /* par allel reg ion */

}

172 lines of code

VEC<double> sparseMatrixVectorProduct(
VEC<double> A, VEC<int> rowindex,
VEC<int> cols, VEC<double> v)

{
VEC expv = distribute(v,cols);
VEC product = A*expv;
return multiReduceSum(product,rowindex);

}
6 lines of code
Better performance & scalability

Nested data parallelism enables safe and
scalable composition of software modules

What conceptually does this comparison tell us? Anything?

Isn’t this just marketing-speak disguised as reasoned analysis?

What conceptually does this comparison tell us? Anything?

Isn’t this just marketing-speak disguised as reasoned analysis?

Third party names are the property of their owners.

Parallel Programming: Can we PLEASE get it right this time?

15

2929

Let’s do it right this time.

Let’s stop taking “pot shots” at each others APIs and adopt a
more disciplined scientific approach:

Science is a community process … if we want to make
progress on programmability, we need to:
– Develop a systematic, Human-centered model of how programmers

solve parallel programs

– Define a human-language of programmability … so we can objectively
discuss pros-and-cons of different programming technologies.

– Define metrics so we can track progress and make systematic
comparisons between APIs

3030

A model of how parallel programmers think

A design pattern language
for parallel algorithm design
with examples in MPI,
OpenMP and Java.

This is our hypothesis for
how programmers think
about parallel programming.

NOTE: this is just a
hypothesis … a starting
point. It needs more peer
review and experiments to
validate our theories.

Parallel Programming: Can we PLEASE get it right this time?

16

3131

The AlgorithmStructure Design Space

Start

Organize By Data

Geometric
Decomposition

Geometric
Decomposition

Linear?

Organize By Tasks

Recursive?

Task
Parallelism

Task
Parallelism

Divide and
Conquer

Divide and
Conquer

Recursive
Data

Recursive
Data

Linear? Recursive?

Organize By Flow of Data

Regular? Irregular?

PipelinePipeline Event Based
Coordination

Event Based
Coordination

Design PatternDesign Pattern

Decision

Decision Point Key

3232

The Supporting Structures Design Space

High level constructs impacting large scale organization of the source
code.

Program Structure

Master/WorkerMaster/Worker

SPMDSPMD

Loop ParallelismLoop Parallelism

Fork/JoinFork/Join

Data Structures

Shared DataShared Data

Shared QueueShared Queue

Distributed ArrayDistributed Array

Parallel Programming: Can we PLEASE get it right this time?

17

3333

Let’s do it right this time.

Let’s stop taking “pot shots” at each others APIs and adopt a
more disciplined scientific approach:

Science is a community process … if we want to make
progress on programmability, we need to:
– Develop a systematic, Human-centered model of how programmers

solve parallel programs

– Define a human-language of programmability … so we can objectively
discuss pros-and-cons of different programming technologies.

– Define metrics so we can track progress and make systematic
comparisons between APIs

3434

A “human” language of programmability

Thomas Green is a well known researcher in the “psychology
of programming” community.

After years of work on formal cognitive models with little to
show for it, he concluded:

The way forward is not to make strong, simple claims about how
cognitive process work. The way forward is to study the details of
how notations convey information.

He proposed a set of “Cognitive Dimensions” as a “discussion
framework” for information notations.

Cognitive Dimensions in action
– First used to analyze visual programming languages.

– Since then, its used to analyze a number of information appliances.

– Used by Steven Clarke of Microsoft to analyze C#

Third party names are the property of their owners.

Parallel Programming: Can we PLEASE get it right this time?

18

3535

Cognitive dimensions
There are around 13 of them. The 10 most important to parallel
programming are:

– Viscosity: how hard is it to introduce small changes.
– Hidden Dependencies: does a change in one part of a program cause other parts to

change in ways not overtly apparent in the program text?
– Error Proneness: How easy is it to make mistakes?
– Progressive Evaluation: can you check a program while incomplete? Can parallelism be

added incrementally?
– Abstraction Gradient: how much is required? How much abstraction is possible
– Closeness of mapping: how well does the language map onto the problem domain?
– Premature commitment: Does the notation constrain the order you do things? AKA

imposed look ahead.
– Consistency: Similar semantics implied by similar syntax. Can you guess one part of the

notation given other parts?
– Hard mental operations: does the notation lead you to complex combinations of primitive

operations
– Terseness: how succinct is the language?

For parallel programming, I’ll add two more
– HW visibility: is a useful cost model exposed to the programmer?
– Portability: does the notation assume constraints on the hardware?

3636

Cognitive Dimensions: viscosity

How easy is it to introduce changes to an existing parallel
program?

Low viscosity example: To change how loop iterations are
scheduled in OpenMP, just change a single clause

#pragma omp parallel for reduction(+:sum) private(x) schedule(dyanmic)
for (i=1;i<= num_steps; i++){

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step *h sum;

Third party names are the property of their owners.

Parallel Programming: Can we PLEASE get it right this time?

19

3737

Cognitive Dimensions: viscosity

How easy is it to introduce changes to an existing parallel
program?

High viscosity example: To change how loop iterations are
scheduled in Win32 threads, change multiple lines of code

step = 1.0/(double) num_steps;
for (i=start;i<= num_steps; i=i+NUM_THREADS){

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
EnterCriticalSection(&hUpdateMutex);
global_sum += sum;
LeaveCriticalSection(&hUpdateMutex);

}

step = 1.0/(double) num_steps;
Initiallize_task_queue(num_steps);
while(!done){

I = get_next()
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);
done = termination_test(i);

}
EnterCriticalSection(&hUpdateMutex);
global_sum += sum;
LeaveCriticalSection(&hUpdateMutex);

}

Third party names are the property of their owners.

3838

Cognitive Dimensions: Error Proneness

Shared address space languages such as OpenMP are very
error prone.

Consider this simple program:

#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for reduction(+:sum)

for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

By forgetting a simple
“private(x)” clause, I’ve
introduced a race condition

Parallel Programming: Can we PLEASE get it right this time?

20

3939

Cognitive Dimensions: Abstraction depth

Abstraction: make the issues you care about visible, hide the
rest.
– Abstraction rich parallel languages:

– TBB (thread building blocks); generic programming and standard template
libraries meets parallel programming.

– Build abstract containers, and introduce parallelism by using concurrent
containers

– Change how concurrency is executed by changing containers.

– Abstraction poor languages:
– OpenMP: Programmer has very little support from the notation for building

abstractions. Very little abstraction is possible.

Abstraction barriers: how much abstraction is required just to
get started.
– TBB has a very high abstraction barrier.

4040

Cognitive Dimensions: Hidden dependencies

Hidden Dependencies: make a change in one location and
effects seen elsewhere … in ways not apparent in the
program text.

Abstraction rich languages increase problems from hidden
dependencies:
– Change member function in a base class, and an object of a derived

class changes its behavior.

Parallel Programming: Can we PLEASE get it right this time?

21

4141

Cognitive dimensions of OpenMP and MPI

Great: assumes minimal
system support

Poor: requires systems with
shared address spaces

Portability

Low: rip prog. apart to expose
distributed data and tasks,
and test once you put things
back together.

High: Semantically neutral
constructs allow incremental
parallelism.

Progressive evaluation

Fair to Good: hardware model
implied but usually visible.

Poor: An abstract API that
hides hardware

HW visibility

Medium-low: disjoint memory
makes races rare and
deadlock easy to find. Long
argument lists are a problem.

High: shared address space =
hard to detect race conditions

Error Proneness

High viscosity: sends/recvs
paired, data structures
explicitly decomposed

Low viscosity: pragma have
minimal semantic weight …
easy to move around

Viscosity

MPIOpenMPCognitive Dimension

Third party names are the property of their owners.

4242

Let’s do it right this time.

Let’s stop taking “pot shots” at each others APIs and adopt a
more disciplined scientific approach:

Science is a community process … if we want to make
progress on programmability, we need to:
– Develop a systematic, Human-centered model of how programmers

solve parallel programs

– Define a human-language of programmability … so we can objectively
discuss pros-and-cons of different programming technologies.

– Define metrics so we can track progress and make systematic
comparisons between APIs

Parallel Programming: Can we PLEASE get it right this time?

22

4343

Metrics of programmability

We have benchmarks for performance, how about for
programmability?

– HPCS took a stab at the problem with their synthetic
compact applications, but they didn’t take it far enough.

– The old Salishan problems were great, but need updating.
– Hamming’s Problem (compute ordered sets of prime numbers):

recursive streams with producer/consumer parallelism and
recursive tasks.

– The Paraffin Problem: nested loop-level parallelism over complex
tree structures

– The doctor’s office: asynchronous processes with circular
dependencies

– Skyline matrix solver: solving structure sparse problems.

Third party names are the property of their owners.

4444

A programmability benchmark suite

Let’s define a set of programmability benchmarks.
– The key is coverage … we must cover the major classes of applications

and parallel algorithms.

The programmability benchmarks must be:
– Provided as serial code in a common high level language.

– Contain lots of concurrency; accessible but not too easily.

– Have a “right” answer that can be easily verified.

– Short … you want users to focus on the parallel notation, not the
program itself.

Parallel Programming: Can we PLEASE get it right this time?

23

4545

A programmability benchmark suite
The famous “view from Berkeley” paper defined thirteen
dwarfs … common clusters of algorithm/application classes:

Third party names are the property of their owners.

Finite state mach.

Graphical methods

Back-track/branch and bound

Spectral methods

Sparse Lin. Alg.

Combinatorial logicGraph traversal

MapReduceDynamic prog

N-body methodsUnstruc. grids

Structured gridsDense Linear Alg.

We could create the “13 exemplars” … i.e. one instance from each cluster.

But the best approach would be for “end user” communities to tell us what
to do.

1. Professional societies from CAD, gaming, business IT, etc. could offer
their top three programmability benchmarks.

2. We’d remove overlap and end up with a converged set of relevant
benchmarks.

4646

So what can you do?
If you are a parallel computing researcher:
– Act like a scientist, generate hypothesis, conduct experiments, and avoid

the stupid mistakes of the past.
– Build off existing APIs (as IBM did with X10). Create new ones only as a last

resort.

If you are a user (i.e. use software others write for you)
– Start insisting on parallel application software

If you are a software developer
– Start engineering parallel code … and demand mature languages with well

developed tool chains.
– Avoid people selling short-cuts based on grand promises, magic and fantasy.

If you are a computer vendor … the problems are bigger than any
one of us. We need to work together to enable serious parallel
software engineering.
– We can use the OpenMP architecture review board as a model for

competitors working together to build the standards we all need.

Third party names are the property of their owners.

Parallel Programming: Can we PLEASE get it right this time?

24

4747

Conclusion

Many core hardware is progressing nicely.

Many core software is stuck … lots of good ideas chasing good
problems but no framework to support systematic progress.

Solution: Let’s do it right this time:
– Learn from past work in parallel computing … fix old languages before

creating new ones.

– Keep centered on the human-side of programming: A community
accepted design pattern language defining standard practice in parallel
algorithm design.

– Act like scientists with peer review and a well defined language of
programmability.

– Metrics to drive real solutions: Standard programmability benchmarks.

