Fitting DFM in Your Design Flow 2007 Electronic Design Process Workshop Rajesh Raina Manager, DFM/DFT Methodology Freescale Semiconductor rajesh.raina@freescale.com

Purpose

- Clarify the buzz words DFM & DFY
 - The origins of DFM
 - Relationship between DFM & DFY
- Explain the business significance
- **DFM Methods in use today**
 - Where the methods are used
 - How the methods are used
- Future DFM Challenges & Opportunities

Outline

- DFM Origins
- How DFM is understood today
 - Taxonomy & Terminology
- DFY in Practice
 - DRM, Metrics, Measurement
 - **DFY in Libraries**
 - DFY in SOC RTL Synthesis, Place & Route
 - DFY in SOC Chip Optimization, LVS/DRC
- Future DFM Methods
- Conclusions

Acknowledgements

- <u>DFM Team</u>: Ken Danti, Scott Hector, Paula Nguyen, Lionel Riviere-Cazau, Matt Thompson, Ruiqi Tian, Carla Thomas, Peter Turner
- Business Groups: Chris Ahrens, Ezra Baruch, Mahboob Rashed, Tom Thomas, Ravi Vaidyanathan, Jeff Warner, Michael Zimin
- <u>Mask/Mfg/Libraries/Fabs</u>: Jonathan Ellis, Andy Espenscheid, Claude Moughanni, Kyle Patterson, Brad Smith
- <u>Management</u>: Joe Pumo, Ross Hirschi, Suresh Venkatesan, Dirk Wristers
- EDA Vendors: Cadence Design Systems, Mentor Graphics Corporation

Selling a Chip – What to consider during design

- 1. ELIMINATE Defects by Design (DFM)
- 2. DETECT Defects by Design (DFT)

Design Technology Differentiators

The World of DFM Design for Manufacturing Pkg Level Die Level Design for Design for Design for Design for Yield (DFY) Assembly/PCB Reliability Test Physical Electrical DFY DFY Retrofit NPI

Techniques for Improving Yield

Defect	Description	DFY Countermeasures		
source				
Random Physical	 Metal/poly shorts and opens Contact/via voids Missing or extra pattern Stress cracks 	 Increase poly pitch and spacing to contacts Contact/via redundancy and reduction Wire widening and spreading ↑ area of metal/active islands 		
Device variation	 L_{eff} variation (gate length, dopants, oxide thickness) Devices not matching models due to local layout (stress, well and pattern proximity) 	 Rule-based changes to layout to mitigate proximity effects (poly and active corners, poly pitch, contact spacing to gate) Statistical device & timing models 		
Lithography capability & variation	 Small focus/exposure window Bridging and pinching Corner rounding and pullback Overlay errors 	 Lithography simulation (using OPC model) to find & remove hot spots Jog elimination Via enclosure optimization 		
Topography due to CMP	 Non-planar topography due to pattern density variation Dishing & erosion Oxide thickness 	 Rule-based tiling CMP–model-driven tiling and extraction 		

DFM is not new

DRC

Column Redundancy

DFM – Why the *Buzz* now ?

193nm Stepper Courtesy: ASML

Feature Size Smaller Than Wavelength

DFM – Lithography Variation

White - Original Drawn. Green - Manufactured. Blue - Corrected Drawn

DFM – Business Case

Process: 90nm Bulk Layers: 6 Masks: 26 Wafer Size: 300 mm

Wafer Cost: \$3030 Wafer Sold: \$5000

Volume: 30K/month Yield Increase: 1%

Revenue increase: \$1.5M/month

Test Coverage: 99% DPM improvement: 7%

DFY Test Vehicles – Examples

Courtesy: Technology Validation Group, Brad Smith

DFY Test Vehicles – Reporting

- Manual reports
 - Graphs showing yield as a function of one or more parameters

- Yield modeling
 - Table to feed yield models

Courtesy: Technology Validation Group, Brad Smith

DFY in Practice – DRM, Metrics

	P		U	E	_ F	a		L L	
Re	Naming	Rules Criticality	DRM reference rules	-L1→	-L2→	-L3→		Comments	Example of
	4R1 M1	1.80	Min Area Mi o i	0.042	0.046	0.050	0.050		auidelines
H		1110			10070	everene.			ganaomioo
	404.00	4110	Min enclosedArea		0.000	0.407			
2	AR3_UD	THC	UD.A.2		0.030	RV0.	112700		values
			Via/Contact Min enclos						
3	EN1_M1.CO	1 HC	M1.EN.1	0	0.005	па	a.at	Applies only on single transitions	
4	EN1_M1.VIA1	1 HC	VIA1.EN.1	0	0.005	na	aat	Applies only on single transitions	
			Via/Contact Min enclos						
5	EX1_M1.CO	1 HC	M1.EX.1		0.045	0.05	0.06	Applies only on single transitions with Enclosure M1.Co < 10nm	
6	EX1_M1.VIA1	1 HC	VIA1.EX.1		0.045	0.05	0.06	Applies only on single transitions with Enclosure M1.V1 < 10nm	
			Redundability						
7	RE1_CO.OD	1 HC			na	na	21		
7	RE1_CO.PO	1 HC	Double if possible, with		na	na	21		
8	RE1_VIA1	1 HC	back up as far as possible		na	па	21		

Source: Lionel Riviere-Cazaux

DFY in Practice - Libraries

DFY in Practice - SOC

DFY in Practice - Stretched StdCells

Place & Route blocks use up to 30% filler cells

...by stretched cells

DFY in Practice - Wire Spreading

 Wire spreading goal is to seek congested minimum space areas and spread the wires to reduce shorts.

DFY in Practice – Avoiding Overkill

Potential Bridging?

Source: Andy Espensceid

Same Electrical Net

DFY - Results

90nm, 6 layer Process

DRC Clean

DFM Check

DFM Fix Area Neutral

Electrical DFY

Source: Michael Zimin

Electrical DFY

- Physical defects can be seen. Electrical defects cannot be seen.
- However Electrical Operation is affected which leads to Yield loss
- Electrical DFY Opportunities
 - P/N Ratios
 - Using M2 for Clock inside FF
 - Making multiple vertical tracks available
 - Using M1 for power (in addition to M2)

DFY & DFT Nexus

Y = Yield T = Test Cov DL = Defect Level

Source: Williams & Brown '81

DFY & DFT Nexus

DFM – Future Opportunities

- Standard Definitions
- Integrating into Design Flow
- Model Based vs Rule Based
- Electrical DFY
- DFY and DFT helping each other

Conclusions

- DFM is an extension of DRC
- Physical DFY is the most common form of DFM – Essential for 90nm & below
- Physical DFY is being integrated in a modern design flow
- Electrical DFY is the next opportunity
- DFY & DFT complement each other
- DFM is incremental

Conclusions

Fixing Antenna and using Double cut vias in a single run:

The following commands repair process antenna violations by inserting diodes and insert fi left when the diodes replace large filler cells:

setNanoRouteMode routeInsertAntennaDiode true setNanoRouteMode routeAntennaCellName cell_A setNanoRouteMode routeReInsertFillerCellList my_fillers globalDetailRoute

The following commands replace single-cut vias with double-cut vias. Run these command

setNanoRouteMode drouteOptimizeUseMultiCutVia true setNanoRouteMode drouteStartIteration 20 setNanoRouteMode drouteEndIteration default detailRoute setNanoRouteMode drouteOptimizeUseMultiCutVia false setNanoRouteMode drouteStartIteration 16 setNanoRouteMode drouteEndIteration 20 detailRoute

- DFY & DFT complement
- DFM is incremental

+1.7% Yield !