

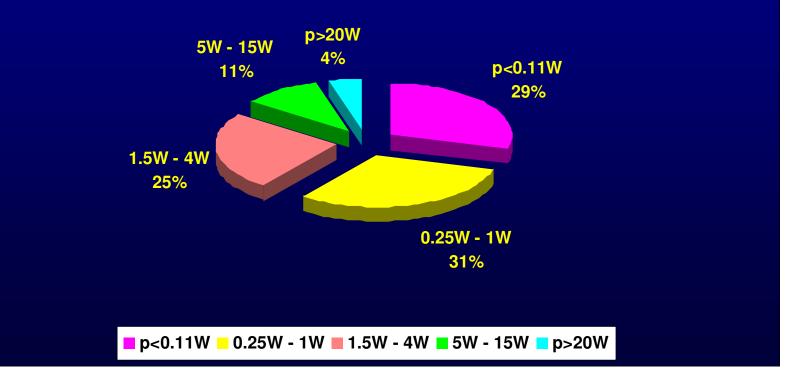
Power Management Early in the Design Flow: Exploration to Implementation

April, 2007 Holly Stump, VP Marketing

© 2007 by Sequence Design, Inc.

Power Management Early in the Design Flow: Exploration to Implementation

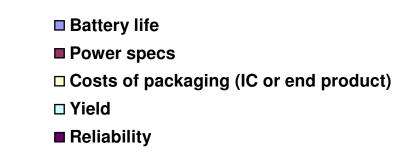
- Managing Power at the Architectural Level
- **RTL Power Management**
- Power Debug Environment
- Silicon-Aware Power Management
- Software and Mode-Dependent Stimulus
- Identifying and Eliminating Wasted Power at RTL
- Popular Power Reduction Techniques
- Clock Power and Clock Gating
- Multi-Vt
- Voltage Islands
- Power Gating
- Power Regression Testing
- **Power Metrics**
- Summary

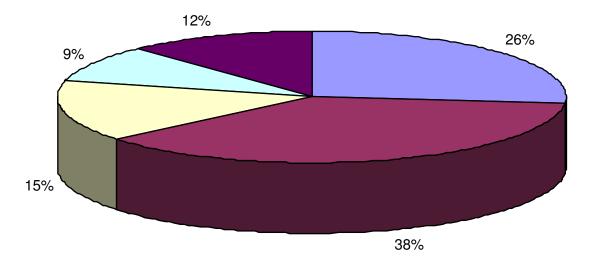


Design Investigations and Power Requirements

Design Investigations Tracked by Power Consumption

Total # Design Investigations Tracked = 13,546 (Jan - Oct, 2006)


Ref: Chip Design Trends Newsletter, John Blyler, Dec 2006



Power Is The New Performance!

Low Power Is Critical Due To:

Survey Summary of SoC Designers DAC 2006 Sample size = 115

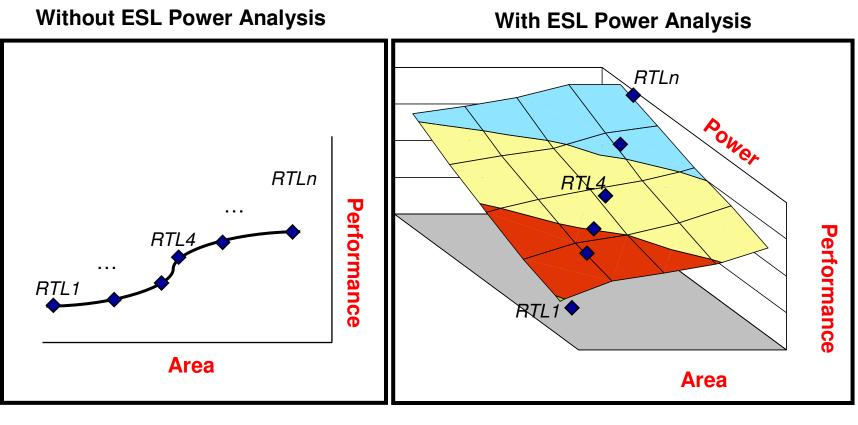
Managing Power at the Architectural Level

• Are you an architect?

2007 Sequence De

- What-if analysis for micro-architectures
- Optimization for power, performance, area

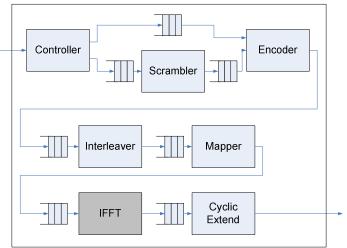
ESL and other explorations


Intelligent debug environment

- RTL power estimation
- RTL power management

Power-Aware ESL Synthesis Flow

Area vs. performance tradeoff Area vs. performance vs. **power** tradeoff



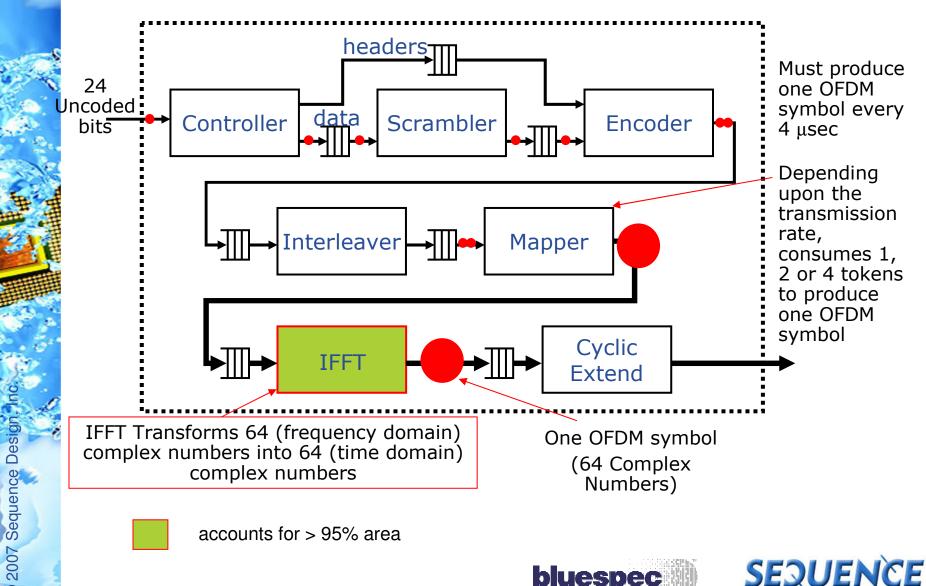
802.11a: Optimized for power, area, performance

802.11a Wi-Fi transmitter

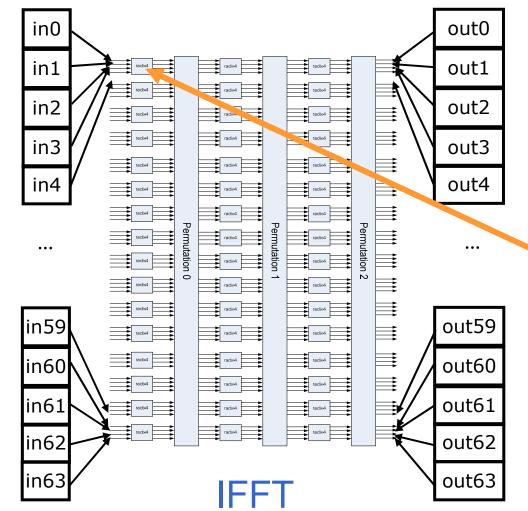
7 candidate micro-architectures

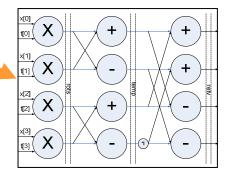
- Push-button tool flow:
 - Bluespec for design
 - Sequence for power
 - Synopsys for RTL synthesis
- Final design: 4 milliwatts

7 micro-architectures implemented and explored in only 5 engineer-days


Source: Dave, Pellauer, Gerding & Arvind Courtesy: MIT

802.11a Transmitter Overview

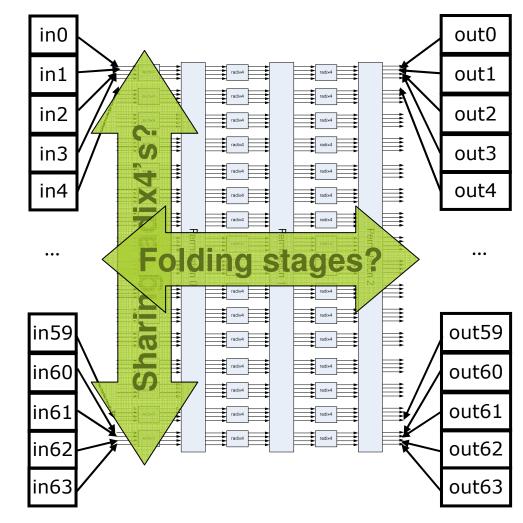

 \odot



IFFT module (combinational)

Each of the 48 radix4 blocks looks like this:

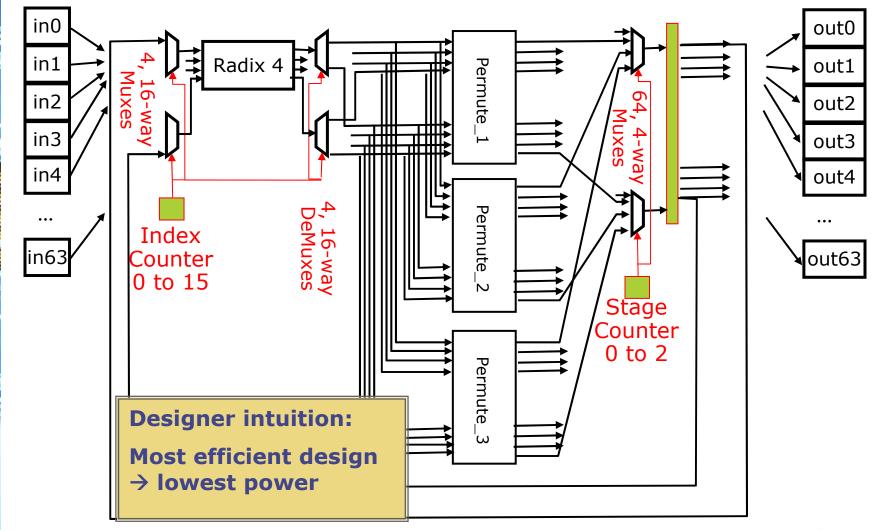
All numbers are complex and represented as two sixteen bit quantities. Fixed-point arithmetic is used to reduce area, power,



. . .

IFFT: Micro-architectural exploration

Each stage's 16 radix4 blocks could be also implemented with 8, 4, 2 or 1 radix4 block(s) used over multiple cycles


Each stage is almost identical, why not fold and re-use what you can?

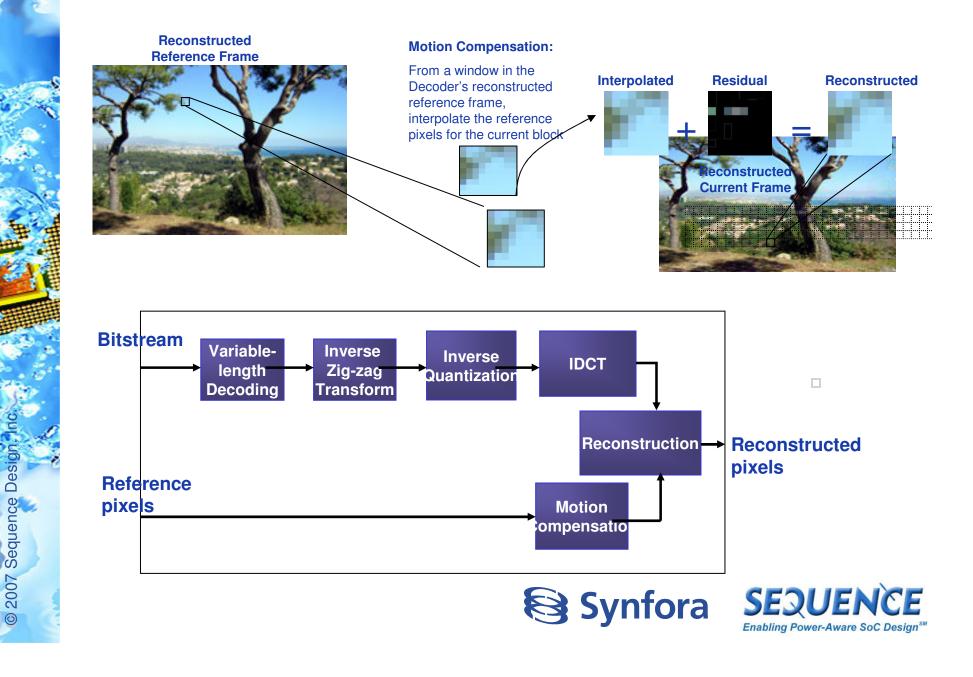
Superfolded circular pipeline: Just one Radix-4 node!

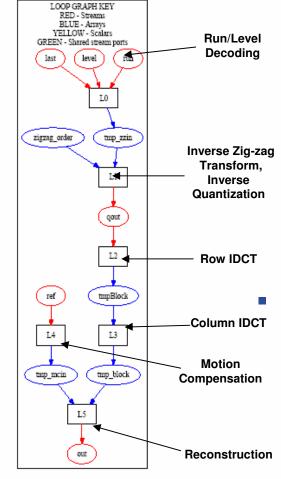
Performance Results

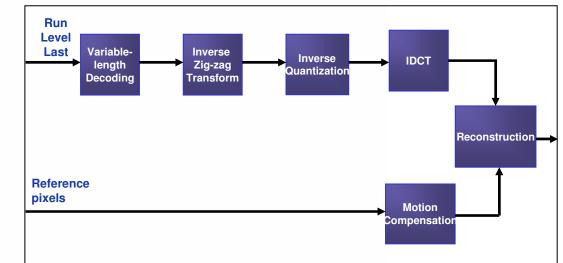
All the combinations created and explored within <u>five</u> days

Designers were <u>astounded</u> to find that their intuitions were wrong and that the critical areas for reducing power were not where they suspected

		PowerTheate	r SOC: com	nb.scn - Pow	ver Consun	nption	
S≷ <u>F</u> ile <u>E</u> d	it <u>P</u> ower <u>V</u> iew	<u>O</u> ptions					<u>H</u> e
Somb c	ontroller/m onv_encode yc_extender fft/mklFFT_ nterleaver/r	kController r/mkConvEnc /mkCyclicExt Comb nkinterleaver	-toC/FI `toS/FI coder_2 ender	FO2_wid FO2_wid 4_48	dth24_g lth27_g dataQ/f header(ordered	er_DW01_sub_i juarded1 liarded1_1 FIFOL1_width2 Q/FIFOL1_widt Q/FIFOL1_widt Q/FIFOL1_widt	>= 2.00 % >= 1.00 % h b t t t t
		1apper_48_64 kScrambler_4					>= 0.10 % >= 0.00 % Bucket
		kScrambler_4		ary		<u><</u>	>= 0.00 %
		kScrambler_4	wer Summ	comb.res			>= 0.00 %
S Z	crambler/m	KScrambler_4	wer Summ		1		>= 0.00 %
N Power	crambler/m	RScrambler_4	wer Summ Static 32.3uW	comb.res Dynamic	Total	Library Defaults	>= 0.00 %
N Power	Attributes	KScrambler_4 Power Contribution Internal power Pad power	wer Summ Static 32.3uW	comb.res Dynamic 1.02uW	Total 33.3uW		>= 0.00 % Bucket
Power	Attributes	KScrambler_4 Power Contribution Internal power Pad power Clock power Clock power	Wer Summ Static 32.3uW 0W 0W 535nW	comb.res Dynamic 1.02uW 0W	Total 33.3uW 0W 0W 947nW	Library Defaults	Power
Power	Attributes	KScrambler_4 Power Contribution Internal power Pad power	wer Summ Static 32.3uW 0W 0W	comb.res Dynamic 1.02uW 0W 0W	Total 33.3uW 0W 0W	Library Defaults	Power Consumption


802.11a Design (by IFFT block type)	Area (um^2)	Symbol Latency (cycles)	Throughput (clks/ symbol)	Min frequency required (MHz)	Average Power (mW)	Optimal
Combinational	4.91	10	4	1.0	3.99	 power
Pipelined	5.25	12	4	1.0	4.92	
Folded - 16 radix4	3.97	12	4	1.0	7.27	
Folded - 8 radix4	3.69	15	6	1.5	10.9	
Folded - 4 radix4	2.45	21	12	3.0	14.4	Original
Folded - 2 radix4	1.84	33	24	6.0	21.1	designer
Folded - 1 radix4	1.52	57	48	12.0	34.6	intuition

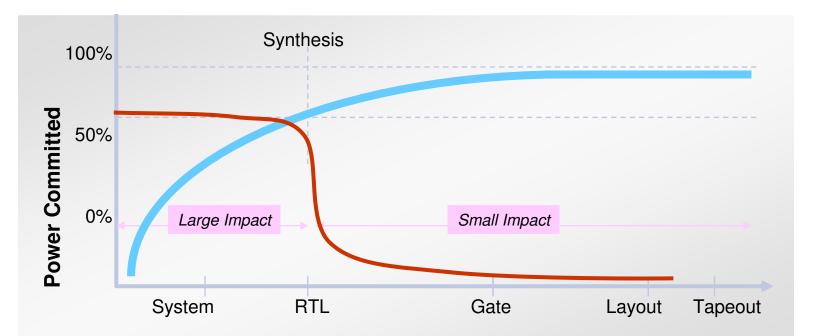

ESL Study in Video Decoding


0

ESL Synthesis, Estimation: Decoder Hardware

RTL Estimate Results for "video demo" application:

- 40.4k gates
- 100MHz
- Library: TSMC 90G Worst Case
- 0.9V power supply
- Power analysis
 - RTL estimate = 4.79mW
 - Gate-level results = 4.40mW



RTL Power Management

- 80% of chip power is determined at RTL (or earlier)
 - SoC power must be dealt with at RTL
 - Gate level appropriate for high-accuracy verification

SEQUENCE Enabling Power-Aware SoC Design^{SI}

Power Debug Environment

What is critical?

- Architectural trade-offs not available at gate
- Estimate block, IP and full chip power
- Vector and vectorless modes

Performance and Capacity

- RTL: 10X gate level throughput
- RTL abstraction / capacity

Accuracy

- Within 20% of gate
 - Clock power algorithms
 - Macro-level power modeling
 - Library, memory, IP power attributes
 - Robust power arc matching

Fast Power Debug

- Visibility and prioritization
 - Thermal map on design hierarchy tree highlights areas to investigate
 - Cross probing to source: isolate power problems
 - Detailed visual and textual reports



Silicon-Aware Power Management

Sequence Desig

2007

0

Software / Vectors / Modal Power Analysis

Gate-level power verification

Dynamic voltage drop

Sequence Desi

2007

Modal Power Analysis at RTL

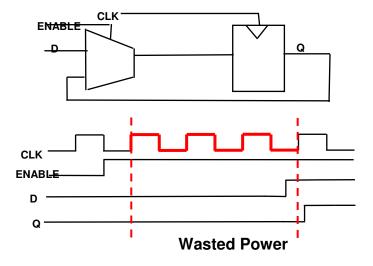
- Run simulation vectors for all critical modes of operation
- Analyze power and activity per mode
- Find modal power bugs

Power Vector Forward

- Identify and qualify worst case power cycles
- Feed forward to gate-level power analysis
- Feed forward to implementation DVD analysis

Identifying, Eliminating Wasted Power

Common errors, mishaps and wasted power


- Enabled clock toggles while data is inactive (shown)
- Data toggles on register input while clock is inactive (register power)
- Wasted (un-gated) clock toggles while data is inactive
- Use clock gating cell with local explicit clock enable instead of feedback mux
- Enable active, data / clock not
- Mux select active, data inactive....
- Memory splitting advisory

Sequence Des

2007

A variety of errors pertaining to

- Clock, datapath, control, memory, I/O
- Muxes, clock-gated registers, memories

Eliminate Wasted Power

2007 Sequence Des

- Pre-defined topology rules based on activity
 - Reporting where, how and how much power can be reduced
 - Clock, datapath, control, memory, I/O
 - Muxes, clock-gated registers, memories

			Reduction Re	sults: rtl_pre_o	pt.red		
	Eile View Implement						
Total Power _34.4mW	Internal Power –33.8m₩	Clock Power –627u₩	Area Impact 27.4K(um)^2	Implement Red			•
□164u ⊕	N 8.06u₩	–172u₩	–254 (um)^2	Loca	l explicit clock enable nce: stats (top.core1.s1.#5)	Prioritized	power savings
🗆 📃 –91.4u	N –91.4u₩	0₩	3.36K(um)^2	Duty	oath operator isolation cycle: 99%		
	Instance; top.core1.t1.l1.#0 Nets: 128						
	/rtl/txchan//lencntr.v				Datapath operator isol	ation	
input [`W	<pre>instruction // load the counter enable; // enable the counter input ['WIDTH-1:0] din; // input data bus fi output onecount; // set when counter reg ['WIDTH-1:0] count; reg onecount; always 0 (posedge clk or negedge nreset) begin if (nreset == 0) begin count = 0; onecount = 0; end</pre>			C	Patapath operator is		
reg [`WID					Definition		
always @ begin if				explicit clock en	chematic shows datapath operators going able. When the enable is off, the datapath tapath is consuming power to compute a r	n output is ignored. In this	
				eloc	k	Detailed ru	ule description
s probing	to == 1	>		enabl	e		
source	bunt =						
	<pre>if ((enable == 1) && (count != begin count = count - 1; else begin count = count; // (end if (count == 1) Display module definition Edit Close</pre>						
				Z	Implementation		
					thematic shows a way to reduce power for ath result is not being used, the datapath		SEQUEN

Ubicom Slashes Power 25%

Communications and Media Processor standout Ubicom

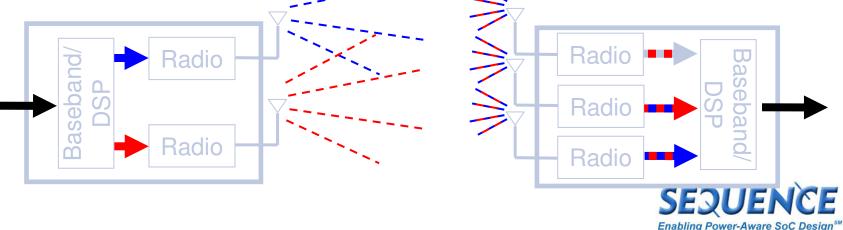
- StreamEngine 5000[™] family
- Chip includes
 - 10 MPUs
 - Commercial IP
 - Memory
 - 350K gates of standard cell logic

Reduced power in multi-core IC logic arrays by 25%

- RTL power analysis and optimization
- RTL clock power analysis
- Automated power reduction (wasted power)

RTL power analysis correlated to within 5% of gates

Airgo Networks (now Qualcomm)



- Single chipset that supports 802.11 a/b/g
 - 802.11 MIMO chip sets (baseband and RF)
 - First commercial/consumer MIMO systems
- First cost-effective True MIMO products with 2x max data rate
 - 108Mbps in one RF channel

Des

2007 Sequence

- 6x to 8x rate/range performance
- 2x3 MIMO System Architecture
- Target: Acceptable power consumption levels

0

700

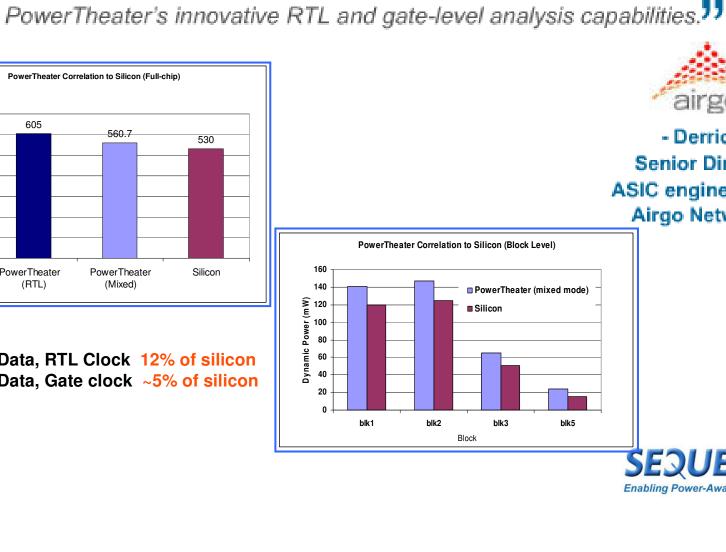
600

500

300

200 100

0


Power (mW) 400 605

PowerTheater

(RTL)

POWER

THEATER

airgo

- Derrick Lin Senior Director ASIC engineering Airgo Networks

AGN100BB chip. We achieved this level of accuracy by leveraging

Wireless

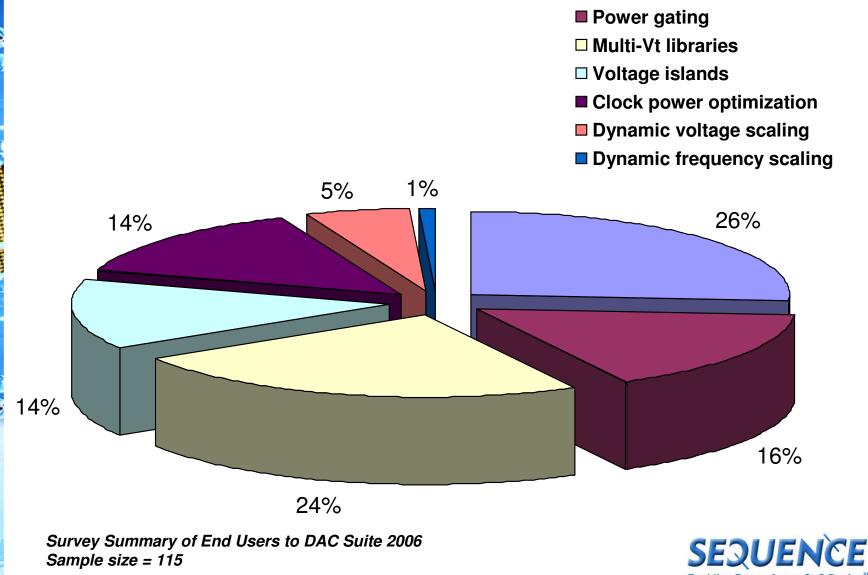
PowerTheater predicted power usage within 10% of silicon for our

RTL Data, RTL Clock 12% of silicon RTL Data, Gate clock ~5% of silicon

Enabling Power-Aware SoC Design^{sh}

SEQUEN

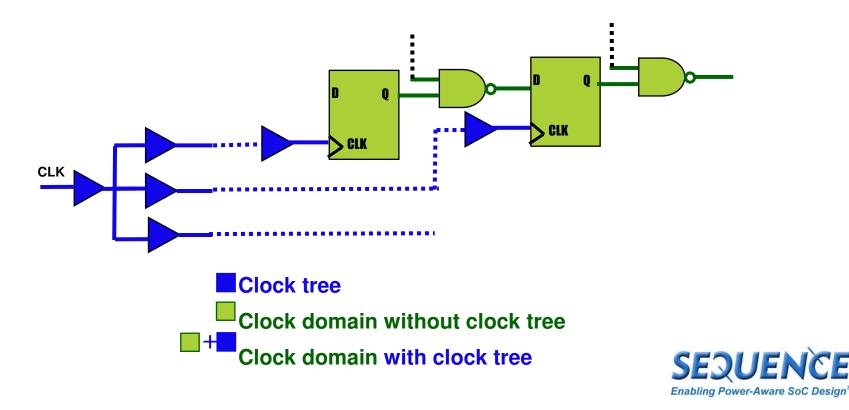
Airgo Methodology


- RTL: fastest, but not the most accurate
 - Gate: good accuracy, but too slow and a new flow for projects that don't do gate level sims
 - 40% of dynamic power consumed in the clock tree
 - Estimate clock tree accurately (SDF back annotated simulations along with SPEF data)
 - Estimate "data" power using RTL simulations
 - Add the two numbers up (using clock activity factors from RTL) to get the "average" dynamic power
 - Determine a good "power vector" based on design knowledge
 - Modeling requirements
 - ASIC library has to be characterized for power
 - RAMs and IOs also have to be characterized for power
 - Wireload models increase data power accuracy
- Taped out several chips with comfortable margins

Popular Power Management Techniques

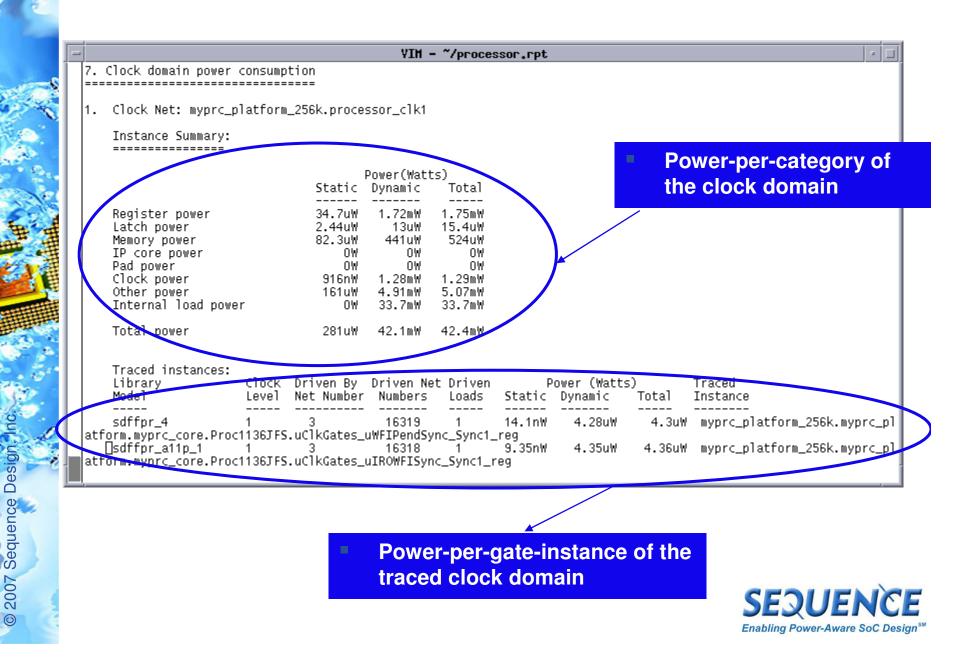
Clock gating

Enabling Power-Aware SoC Designsm

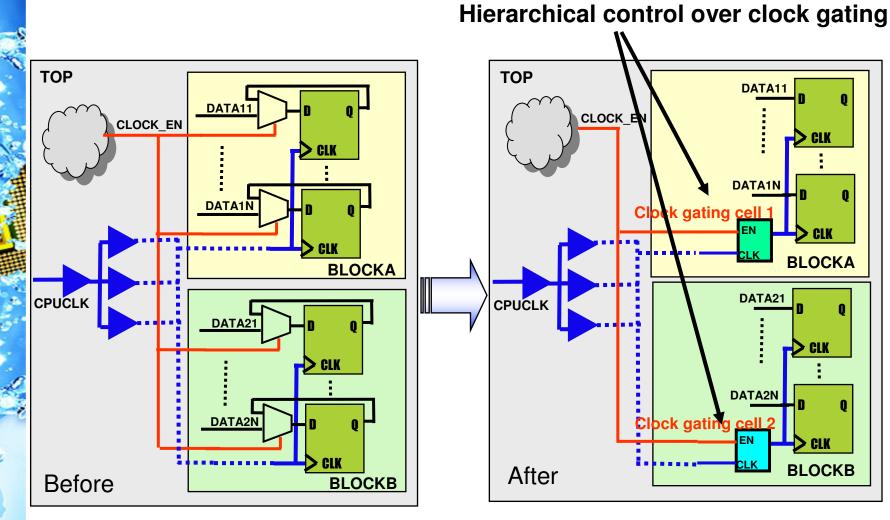

Clock Power and Clock Gating

- Clock power is significant
 - Frequently 40-50% of total active power
 - Clock and clock tree

Clock gating


2007 Sequence Des

Explore Power Savings: >25% of clock power


Reporting Clock Domain Power

0

Hierarchical Clock Gating

Multi-Vt

- The good:
 - Multi-Vt libraries can save approximately 5-15%
 - Multi-Vt is not a challenge; easy to do

The bad:

- Cost of multi-Vt libraries
- Timing issues
- Signal integrity
- The tradeoffs are generally obvious...and tools exist...

Voltage Islands

The good

Voltage islands can save approximately 10-50%

The bad

- Cost of characterization of libraries
- Area penalties
 - Power grid
 - Level shifters
- Performance degradation
 - Timing
- Complexity
 - Timing, SI, voltage drop

The ugly

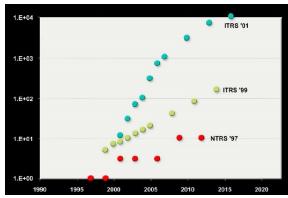
 Design, verification, implementation tools are not integrated or robust

Power Gating...Power vs Penalty

The good

Power gating can save approximately 10-1000X leakage

The bad


- Increases complexity
 - Rush current problems; wake-up time, switch sizing and sequencing
 - Timing, SI, voltage drop
- Area penalties
 - Power grid
 - Level shifters, isolation cells
- Impacts performance and creates timing issues

The ugly

2007 Sequence De:

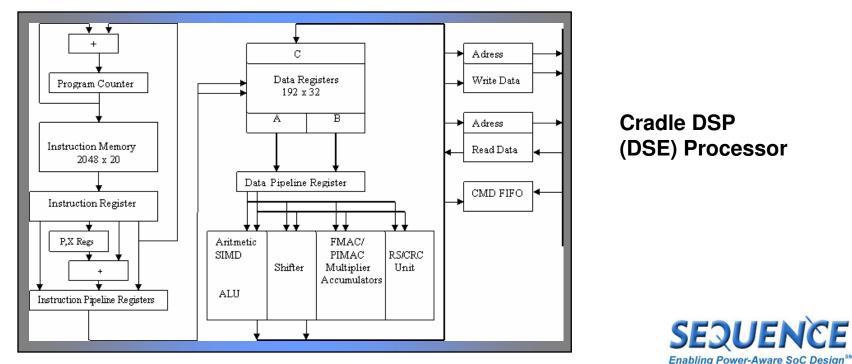
 Again, design, verification, implementation tools are not integrated or robust

"Leakage will become a major industry crisis, threatening the survival of CMOS itself" ITRS2005 Executive Summary

Cradle Architecture

- Capable of real-time encoding
 - 16 channels of MPEG4 SP@L3
 - 4 channels of MPEG4 ASP@L5
 - or 1 channel of H.264 Main Profile D1
- 55 Million Transistors (In-House RISC and DSP processor design), 180K Flops, 4 clock domains
- 24 processing cores
 - 16 DSPs and 8 General-Purpose Processors (GPPs)
- A smart I/O subsystem providing up to 144 fully programmable I/O pins
- A DDR SDRAM interface to support high data throughputs for high-definition video processing

Cradle Architecture



- Low power consumption across the family
 - As low as 1.5 W

2007 Sequence Desi

0

- Loosely coupled multiprocessor architecture enables more efficient system level performance:
 - Megapixel sensor interfaces, image enhancement, data encryption, video/audio Codecs, complex network stacks and system

Power DSE Results

Test	Total/Clock (mW)	sub-module power consumption (mW)					
		IF	MAC	RF	DF		
1 Directed Test	174 / 61	35.09	27.5	20.92	8.26		
Directed Test		(20.13%)	(15.8%)	(12.45%)	(4.91%)		
2 Directed Test	173 / 61	34.42	27.3	20.68	8.61		
3 Directed Test	169 / 61	34.65	23.1	20.88	8.38		
4 MAC usage	194 / 61	34.7	41.5	21.29	11.05		
5 MAC power down mode	138 / 40	25.01	4.84	21.99	7.15		
6 Application	159 / 61	33.76	19.9	20.09	6.64		

Power Estimation at RTL: DSP at Cradle

PT Accuracy

Design	PT Power	Actual Silicon Power		
DSE Block	160 mW*	150 mW*	(8% less)	
Full Chip	5.3 W**	4.9 W**	(8% Less)	
Clock Tree	2.17 W	1.95 W	(10% less)	

* Block power depends on test and activity. It ranges from 138mW to 194mW

**Full Chip power is based on specific vectors and does NOT represent overall power in applications

Sequence Low Power Seminar

10

55 Million Transistors (In-House RISC and DSP processor design) , 180K Flops, 4 clock domains 24 processing cores, including 16 DSPs and 8 General-Purpose Processors (GPPs)

Design for Power! Simple Power Saving Techniques

- Power debug
 - Apply power reduction schemes first to the sub-modules that consume power mostly
 - Determine and eliminate "hot spots"

Clocks

Clock tree consumes 40 – 50% of total power; reduction scheme is very important

Vectors

Develop accurate power vectors that exercise all possible nodes

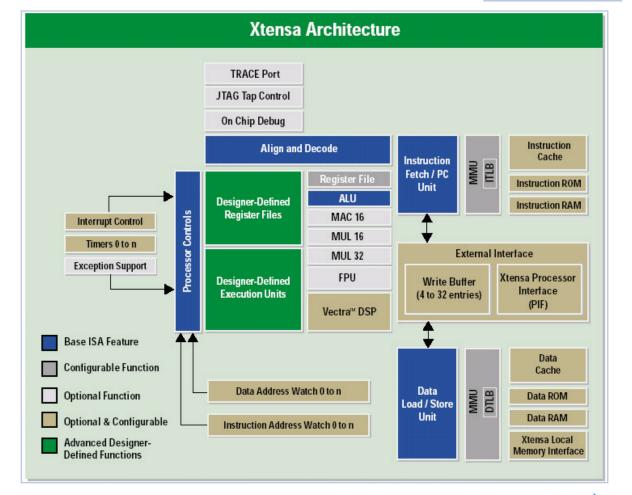
Write RTL and optimize for power

- Shut off data switching when in idle state
- Provide chip enables and output enables effectively
- Use gated clocks to all data flops
- Use multiplexed flops to change data when enables are set
- Use "Grey Code" scheme for FIFO pointers and memory addresses

Memories

2007 Sequence Des

- Power-efficient memory selection is key
- Replace flop cluster with custom or standard compiled memories
- Try different memory configurations (1 bank, 2 bank, different aspect ratio etc).
- Shut off clocks to all memories when not in use: Memory Chip Enable
- Splitting memory can reduce power as much as 30%
- Multi-VT libraries reduce power and leakage



Power Regression Testing Methodology

Tensilica Configurable and extensible microprocessor cores for embedded SOC designs You Can't Fix

What You Can't Measure!

SEQUENCE Enabling Power-Aware SoC Design⁵⁴

Design Goal

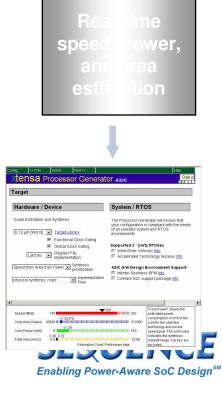
- Reduce power dissipation by 25% compared to the previous generation design
- Previous generation already optimized for low power operation
 - Must work on lowering power during early design phase
- Special challenges for configurable IP cores
 - Configurable cores have numerous combinations to test
 - Soft IP characterized for various fabrication processes
 - Requires database of area, timing, and power numbers
- Need a methodology for monitoring power dissipation on a regular basis, with meaningful feedback to designers
- RTL advantages over gate
 - Debug visibility

De

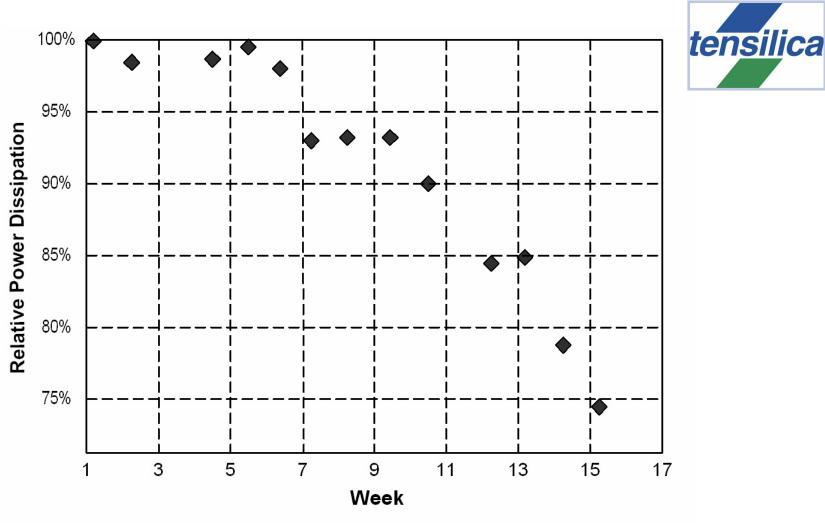
Sequence

2007

Performance and capacity for long simulations


Power Regressions

- Measure effectiveness of clock gating
 - Xtensa processor employs global & functional clock gating


Tune DSP extensions for low power

- Profile power dissipated executing common DSP kernels
- Tune assembly code and hardware implementation to meet aggressive power goals
- Guard against any undue increase in power
- Generate characterization data for the Xtensa "Processor Generator"

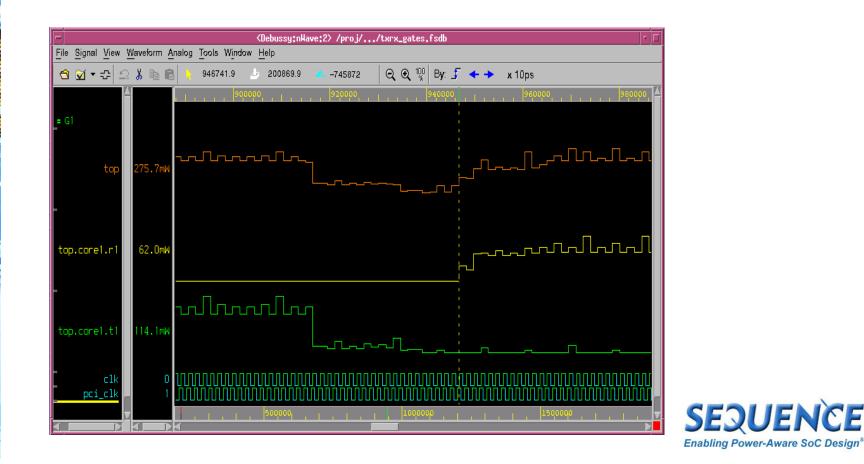
Weekly Power Regression Tracking

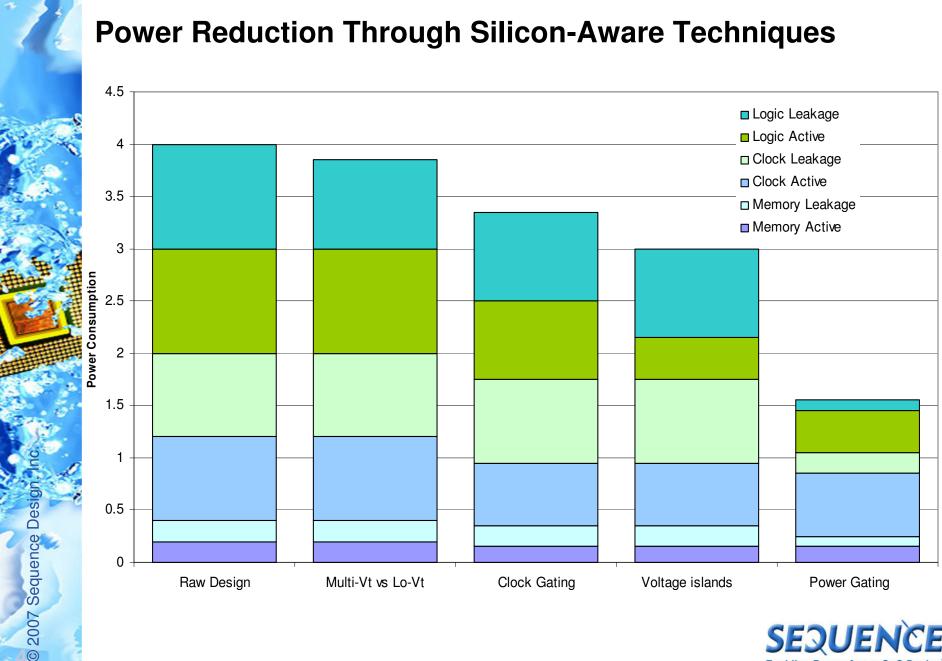
Goal met: 25% power reduction in 15 weeks

Configurable, extensible processor cores for embedded SOC designs

2007 Sequence Des

0

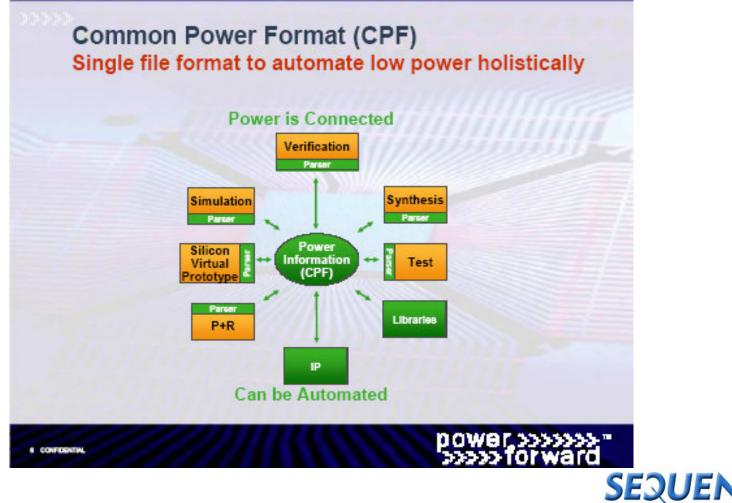



Verify and Refine Power at Gate Level

Eliminate power creep

2007 Sequence Des

- Enhance productivity and ease of debug
- Gate-level power analysis using RTL simulations
- Power vs time waveforms correlated to event waveforms


SEQUENCE

Enabling Power-Aware SoC Design[™]

Emerging Low Power Standards

- Design for power intent
 - Enabling innovation

Enabling Power-Aware SoC Design[™]

CE

Best Practices Summary

- Design for Low Power Intent!
- Architectural exploration has great impact
- Verify power early and often
- Prioritize "power offenders" and take corrective action during the RTL design phase
- Choose worst case power vectors from each mode of operation
- Eliminate "wasted" power

2007 Sequence

- Run "power regressions" throughout RTL to tapeout
 - A single low power standard: to unify the methodology flow
- Control the true costs of power.....

