MAGMA.

Should Power Management Govern Design Hierarchy?

EDP, April 2007, Ed Huijbregts

Contents

- Logic Hierarchy
- Domain definition
- Floorplans and supply styles
- Supply ware buffering
- Auto-partitioning
- Logical restructuring
- Summary

Logical Hierarchy

Logical - Electrical - Physical

Domains

A domain specifies for a group of related cells

- The supply nets for these cells
- The recipe to connect these nets to the cells
- The operating conditions, P Vⁿ T for best and worst

Typically domains are aligned with logical hierarchy

- The logical boundaries are required to understand the electrical qualities of the inferred logic
 - What domain does it belong?
 - What voltage do they run on?
 - What timing characteristics do they have?
- Is this alignment really required?

E.g. Domains in UPF

- UPF creates domains on a model, called the scope of the domain
- The supply nets of the domain are visible in the extent of the domain, i.e. all hierarchical cells that are in this domain
- Draw figure to explain....

Automatic Power Gating – Not limited to hierarchy

Floorplans

A floorplan specifies for a group of related cells

- Rectilinear shape
- Cell row definition
- Floorplans are not allowed to have partial overlap
- Floorplans behave as exclusive placement regions
- Floorplans behave as boundaries for global routing
- A floorplan has exactly one domain
- A domain may have multiple floorplans

Power distribution styles in floorplans are diverse, e.g.

- One set of supply nets homogenously available
- Occasional sparse supply connections routed as single-connections
- Multiple sets of supply nets, uniformly available in the floorplan
- Many small homogeneous floorplans, a.k.a. gas-stations
- Hybrid forms.....

- Floorplans are used to create blocks in a building block style
- Floorplans are used to concentrate logic with similar supply requirements
 - Different voltage levels
 - Switched supplies

Homogeneous floorplans, each cellrow has same rails

Cellrows (color indicate supply sets)

Long-wire buffering in homogenous floorplans: gas-stations

Long-wire buffering in porous floorplans: parts of the cellrow have different rails

MTCMOS variants

Coarse grain MTCMOS

Fine grain MTCMOS

	switch switched logic constant logic Cellrow
	Vdd
	VddS
Coarse grain MTCMOS Constant and switched rails Regular logic 	Vss

- Constant rails
- Regular logic

Vss

Talus – Magma's New Automation Technology

- Distributed RTL Synthesis
- Automated Partitioning and Shaping
- Automated Power Planning and Implementation
- Automated Clock Planning and Implementation
- Automated Time Budgeting
- Distributed Block Implementation
- Final Chip Assembly

May 21, 2007 - Magma Confidential - 15

Automatic Physical Partitioning

Mapping logical hierarchy to physical hierarchy

- Talus provides automatic partitioning
 - allows appropriate sizes for closure flows
 - (re)grouping of attracted logic
 - **Distributes glue logic** into the partitions.
- Use of "Overlays" guarantees that the original logical hierarchy can be extracted

Logical Re-Partition of Hierarchy

Traditional Approach

Talus Approach

Logical Hierarchy associated with floorplans directly

• Each partition is a level of the logical hierarchy, and user determines which level gets its own "physical hierarchy" or floorplan.

- Auto Partitioning determines what should be grouped
 - After initial cluster placement
 - Cell proximity, block size and pin reduction are cost factors
 - Example: determines that cells C,D, and E should be grouped.

May 21, 2007 - Magma Confidential - 17

Partition Hierarchy (3 levels)

 Overlay cell automatically generated for all partitions

- Multiple non-sibling cells can be instantiated in an overlay cell
- Linked to single floorplan object
- Original Cells are "maintained" for Verilog export

Talus Approach (Physical)

Overlay (Floorplan)		
FeedThru's	-D- 3D-	
C A E	Glue logic	
	FeedThru's	
D- D- D- D- Glue logic -		
	G	

- Physical hierarchy contains auto partitioned logical hierarchy
 - Other logic will reside in Overlay cell, such as feedthroughs and glue logic

Freedom in physical hierarchy: Logic restructuring

- More and more customers are requesting the ability to allow the manipulation of physical hierarchy independently of logical hierarchy.
- This is required for a number of reason, for example the customer might have legacy blocks or receive IP that requires a different physical hierarchy.

• Requirements for logical and physical hierarchies

- Each physical floorplan should map onto a single logical hierarchy.
- Each floorplan must be contained within it's parent, i.e. B must be inside A which must be inside top.

- The physical hierarchy shown above is one example of where the user wants break the parent sibling relationship.
- Content of both model B and model C should end up in a single floorplan BC. This is a violation of the siblings-only in a floorplan demand.

- The communication from the cell in model **B** to model **C** is shown both logically and physically in the above diagram.
- Obviously the physical connectivity shown in diagram 1 above isn't desired and would lead to a poor topology. Therefore we could modify this routing topology so that we have the physical topology shown in diagram 2.
- Basically, we let the global router connect the two cells by shortest path no problem
- Both of the above physical topologies wouldn't result in any modifications to the original logical hierarchy, even if a buffer had to be inserted in the path between the two cells.

- This example is very similar to the previous example, but the connection to a cell in the model **A** imposes restrictions on the flexibility of the physical floorplan.
- Note that we do need to insert an additional logical boundary crossing to 'fix' the physical hierarchy.

- If we want to achieve the routing topology shown in diagram 2, then we need to add more freedom.
- This is like a 'physical boundary optimize', where we allow copying oflogical boundary corssings to give the router freedom to create such topology.

Distributed Floorplans

- This diagram shows that the logical hierarchy for the B floorplan has been distributed over three physical floorplans (B1, B2 and B3).
- Two problems need to be solved
 - (Automatic) Assignment of cells in B to either B1, B2 and B3
 - Routing and buffering of nets between B1...B3

Summary

- Power management typically governs design partitioning, both logically and physically
 - A tight relation between logic and electrical boundaries seems a very pleasant property to continue to use current mapping technology
- A semi-loose relation is possible between electrical partitioning and physical hierarchy
- Also, more freedom is desirable and possible between the logic hierarchy and physical hierarchy
- Requirement to automation the use of that freedom

