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Historical trends set high expectations

� Most things have been improving at an exponential rate (except batteries)

� Past trends induce an expectation of perpetual growth

� How does one deliver the expected system performance in a fixed energy budget?!

Source: J. A. Paradiso and T. Starner.

Energy Scavenging for Mobile and Wireless
Electronics IEEE Pervasive Computing, 
2005.

Processor

Battery
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… encourage bold hw requirements
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Nintendo GameBoy (1989)

CPU: 8-bit Z-80 processor, 1.05 MHz 

Screen: 2.6" 160 x 140 LCD

Connectivity: 4 players by serial cable

Price: introduction price - $169 

Nintendo DS (2004)

CPU: ARM9™ (66 MHz) and ARM7™ (33MHz) 

Screen: Two 3" 256 X 192 colour LCDs

Connectivity: 16 players wirelessly 

and embedded WLAN

Price: exp. introduction price - $150 

>1000x performance

for the same price

15 Years of Change - our entitlement

© Nintendo
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The cost of fulfilling our expectations
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IC Design Costs

(Feature Dimensions vs. Cost in $ Millions)
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Problem definition

Market expects exponential improvements

� in silicon integration densities and per-transistor costs

Increasingly difficult to deliver

� Complexity implies high design and manufacturing costs

� Pressure on cutting time-to-market

� High risk: breakeven at increasingly higher volumes

Much of the problem lies with physics

� And the way we think about getting “around” it

� Trends are on a vector in the wrong direction

� Designing for the worst-case is becoming unsustainable

� Design cost is on a fast ramp

� Increased Si variation: typical is much better than worst
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The shape of the solution

Spend transistors on easing hard design problems

Break some abstractions

� Computation may not always be correct

� Miss timing some of the time, compensate at run-time

Speculate on correctness

� Assume that circuits work as expected, recover if not

� Speculation is key to minimizing run-time overhead

Need fault tolerance features in mainstream systems

� ... at commodity prices

� ... full redundancy is not an option
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Razor: a microarchitecture for the nanoscale era

� The wall ahead of Moore’s Law is made of rubber

� How far it can be stretched is an open (and expensive) question

� Good control of emerging Si process technologies is increasingly difficult

� Engineering complexity (cost) is on a steep incline

� Unfortunately we cannot change the laws of physics

� But can make it easier for engineers to deal with them

� Today: most chips designed for & operated at worst-case parameters

� Achievable but means that all chips run either too
slow or using too much power almost all the time

� Example on right: all chips run using 40%-60% less

energy when adapted to the specifics of their dies
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� Tomorrow: rarely occurring corner cases will
severely limit advantages from process scaling

� Need to optimize for the typical case while correcting
for worst case conditions

�� Razor puts the lid on implementation complexityRazor puts the lid on implementation complexity
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Key concepts: Design Margins

�Traditional design margining

� Design for the worst-case conditions

�Static

� Inter-die (SS, FF, FS, SF)

� Intra-die variations

�Dynamic

� Power supply variations 

� IR drop 

� Temperature fluctuations

� Coupling noise (capacitive, inductive)

� Clock jitter

� BUT worst-case conditions do not happen all of the time

Tlimit
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Why assume worst-case all the time?
� Worst-case could happen

� Timing Speculation

� Predict “typical” circuit delay, but check the result using worst-case 
assumptions

� Clock frequency can be increased, but with additional cycles required 
for error recovery

Tworst-case

Tspeculation
Error 

Region
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One size does not fit all

� Conventional design is too conservative with operating margins

� Tune optimal operating points over life-time of each device

� Need fault tolerance to be able to find best operating point

� Design must be pushed over the edge to learn where the edge is

Variance of silicon, ambient, and temporal workload conditions
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The high level idea
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� Double-sampling metastability tolerant latches detect timing errors

� Microarchitectural support restores state

� Timing errors are similar to branch mispredictions



13

Razor added to a standard pipeline
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� Dynamic Voltage Scaling

� Scale processor voltage and frequency based on run-time requirements

� How low can the supply voltage be scaled?

� Traditional DVS uses delay chain padded with worst-case safety margins

� Safety margins reduce possible energy savings

� Worst-case conditions are extremely rare

� Razor DVS uses in-situ error detection and correction to eliminate safety margins

DVS using Razor

Supply Voltage

Energy of Processor
w/o Razor Support

Energy

Zero margin 

Traditional 
DVS

Total Energy,
Etotal = Eproc + Erecovery

Optimal Etotal

Pipeline
Throughput

IPC

Energy of Processor
Operations, Eproc

Energy of Pipeline Recovery, Erecovery

Sub-critical
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Chip 1 Measurement Results
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Can one afford not to be energy efficient?!
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Under typical case conditions all chips are at least 39% more energy efficient

� Worst-case design uses margins for corners that are very infrequent, or even impossible

Typical-case operation requires an understanding of when and how systems break

� Razor specifies the microarchitectural requirements
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Impact of Process Variation
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No snake oil

� Deep submicron processes are problematic

� Process variation, IR-drop, temperature fluctuation, model uncertainty

� Design-time solution: larger built-in safety margins

� Yields lower performance, higher cost, higher power devices

� Most severe problems are also the least frequent

� Soft errors, capacitive, inductive noise, charge sharing, floating body effect…

� Only pay a penalty when the problem actually occurs!

� Razor removes design-time safety margins at run-time 

� Worst-case margins are always preserved (but moved off the critical path)

� Design-time certainty about full range of operation

� Improvements in worst-case characterization

improve the operating range and may reduce
the deployment overhead of Razor
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Conclusions

Need to find creative solutions for design problems

� To be able to live up to technology expectations

Focus on how to enable typical-case operation

� Worst-case may be much, much worse than typical

Speculation on correctness

� Timing, SEU, wearout (?)

Trade-off margining and fault tolerance
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