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Agenda

u Video processing requirements of portable
entertainment applications

u Characterizing “variability” in digital video
processing

u Low power design technigues and their
applicability in the context of Digital Video Sub-
system and the SoC

u EDA challenges and Opportunities

J{P TEXAS INSTRUMENTS



Video Processing Chain
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Personal Video Entertainment

u Portable Video Recorder

u Portable TV (DVB-T, DVB-H)
u Portable Media Player

u Digital Camcorder

u Portable Navigation

u Video phone

u Web terminal

J{P TEXAS INSTRUMENTS



Portable Media Player —
video interfaces
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Customer care-abouts

u Multi-standard, multi-format video processing

Multiple standards

A
DVD, DVB-T MPEG2
DVvB-H H.264, VC1
DivX MPEG4
HD-DVD VC1

Multiple
/ > Formats
Interlaced
VS
Progressive Encode, Decode
Transcode

u Cost
u Power/Energy
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Video formats
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DV _Engine Solution Space
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H.264 Encoder
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H.264 Decoder
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Driving Area Efficiency

u Leverage Decoder & Encoder functionality overlap

u Programmable HWAs for similar compute functions
but with different parameters (such as number of
taps), and/or different coefficients

n DCT/IDCT, 8X8 vs 4x4

Quantization, scaling

Variable length coding

Interpolation (half pixel, quarter pixel)

Filtering

n
n
n
n

u Hardware-Software partition to meet the desired
performance and programmability requirements with
minimal area

J{P TEXAS INSTRUMENTS



Data driven variability in Decoding
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Low Power Design — across all levels

SOC Design

Dual-VT Cells  Retention SRAM/Logic ~ PM Cell Library

Process/Temperature Sensor Low-Leakage Processes
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Component level support

Technology Description

e e SRAM and logic retention cells support dynamic

and logic power switching without state loss, lowering
voltage and reducing leakage.

Dual-threshold Higher threshold for lower leakage and lower

voltages threshold for higher performance.

Power management Switching, isolation and level shifters support multiple

cell library domains in SOC implementations.

Process and Adapts voltage dynamically in response to silicon

temperature sensor processes and temperature variations.

Design flow support Complete, nonintrusive support for easily

integrating SmartReflex technologies.
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SoC level Power
Management Strateqies

( SOC architectural
| and design technologies
Technology Description
Aﬂ‘agﬁue Voltage Maintains high performance while minimizing
Scaling (AVS) voltage based on silicon process and temperature.
Dynamic Power Dynamically switches between power modes based
Switching (DPS) on system activity to reduce leakage power.
Dynamic Vm‘tagg and Dynamically adjusts voltage and frequency to adapt
Frequency Scaling (DVFS) to the performance required.
Multiple Domains Enables distinct physical domains for granular
(Voltage/Power/Clock) power/performance management by software.
Static Leakage Maintains lowest static power mode compatible
Management (SLM) with required system responsiveness to reduce
leakage power. J
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Power optimal MHz-Vcc Operating Point

u Lower Vcc helps both dynamic and leakage power

u If Vcc is lowered while keeping MHz same — can result
In area increase — impacting cost and negating any
power gain

u At architecture level — MHz/Vcc for a given technology
drives the degree of parallelism and pipelining

u The choice of target format for power optimization
Impacts area efficiency — for example, an
Implementation which gives lowest power for 720P
resolution is likely to be different (higher area) than the
Implementation which gives lowest power for D1
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Power Reduction - at Application/ZVideo
stream level

u If it’s decode function — turn off (clock gate/power
down) encode functionality (e.g. Motion Estimation)

u For the standard and the profile to be processed, turn
off hardware supporting all other standards and
profiles (e.qg. if MPEG4, turn off CABAC engine In
entropy decoder)

u Dynamic frequency and voltage scaling — set the DV
engine frequency and voltage operating points —
depending on the resolution being supported — D1 at
30fps requires —2.66 times lesser compute than 720P

at 30fps.
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Power Reduction @ Frame level

u Turn off un-used hardware dependingon | vs P vs B
frame

u Turn off un-used hardware depending on Interlaced
vs Progressive content
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Power Reduction @ MB Level

u Turn off individual hardware accelerators as soon as
the computation for the current Macro-block is done
(due to variability, the pipeline cannot be fully
balanced)

u During motion-compensation the compute
requirements vary depending on 1 motion vector vs 4
motion vectors per macro block, they also vary
depending on motion vector resolution in terms of
pixel vs half pixel vs quarter pixel.

u Turn off deblocking filter, if boundary strength is O or
there is significant change (gradient) across block
boundary in the original image.
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Dynamic vs Leakage Power
Scaling with Resolution
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Power Reduction for CIF

u Compute requirements significantly lower, voltage
scaling is limited by Vcc-min.

u Running the engine at lower frequency without
lowering the voltage — does not help save energy

u Multiple approaches:

1. Significant cycle overhead in completely switching off
the engine and switching it back on — does not help at
macro-block level, marginal gain at frame level, but
done over a group of frames can give power reduction

2. Power down the engine but save the state using
retention flops and putting memories in the retention
mode — area overhead

3. Design the engine as a “bit slice” and switch off one half
while processing CIF — has software implications.
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DVES — applicability at SoC level?

u Audio does not scale with resolution

u Any system function which demands real-time
response in a narrow time window

u Modules in the video output processing chain which
are tied to the resolution of the display device as
against resolution of the video being processed

@ Implies multiple voltage domains- can have system
level cost implications from PMU standpoint
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Managing data bandwidth

u Increasing resolution — implies scaling the 10
bandwidth accordingly — but may not be feasible,
practical — DDR speed limitations, SDRAM
limitation, power, area impact etc.

u Need architecture level solution to address this
bottleneck

n On-chip buffers

n On the fly computation

n Improving efficiency of 2D transfers
n SDRAM data organization

n Algorithmic solutions?

u At lower resolution, can minimize SDRAM power by
powering down unused banks
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EDA Challenges and Opportunities

u System level power estimation/modelling
u Power management — synthesis and verification

u Physical design challenges

Automated clock gating

Physical design aware low power synthesis
Multi-Vt optimization

Timing closure at multiple corners (with DVFS — need to
sweep Vmin and Vmax range)

n
n
n
n

u Building a configurable IP generator — supporting both
run-time as well as compile-time scalability (e.g.
building a MPEG4 Decode only engine optimized for
power and area, with no software change)
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Summary

u Portable video entertainment market needs a multi-
format, multi-standard digital video engine with HD
capability at low cost and low power

u Highlighted the “variability” in the digital video
processing needs including data driven variability

u Discussed the entire spectrum of power management
techniques and its applicability to the power
minimization of the DV engine

u Highlighted a few system level considerations and their
architectural implications

u Finally, presented EDA challenges and opportunity
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