
1

Hardware/Software Partitioning of
Operating Systems:

a Behavioral Synthesis Approach

Sathish Chandra
NEC Laboratories America

Princeton, NJ, USA
sathish@nec-labs.com

Francesco Regazzoni
ALaRI – Unversity of Lugano

Lugano, CH
regazzoni@alari.ch

Marcello Lajolo
NEC Laboratories America

Princeton, NJ, USA
lajolo@nec-labs.com

www.alari.ch www.nec-labs.com

Outline
● Motivations
● State of the art
● Traditional system overview
● Our solution:

– Overview
– Communication APIs
– Context switching
– Hardware support
– HW-RTOS full architecture summary

● Case study and Results
● Conclusions

2

Motivations

● History of operating systems:
– Initially created for supporting and scheduling the tasks that

run on a CPU

– Now they are a very complex infrastructures

– Modern operating systems are designed to schedule and
support any conceivable combination of applications

● This strategy makes sense for desktop systems,
workstations and mainframes, but...

● It is not adequate for embedded systems

Embedded Operating Systems
● In embedded systems:

– memory size is a constraint
– response time is very often critical (real time embedded systems)

● In an SoC, each processor should perform at least two tasks:
– the task for which it is designed
– the task that provides communication with the rest of the system

● Any such processor that performs more than one task needs some
kind of operating system to:
– schedule the tasks
– allocate resources
– prevent deadlocks

3

Why hardware implementation of
operating systems?
● Modern behavioral hardware synthesis tools allow to

extract from the original Operating System kernel
significant portions of its functionality and re-implement
them in hardware without the need to perform major
code modifications

● How to achieve better performance:
– select functionalities of a traditional operating system

described in C language

– synthesize them using a behavioral synthesis tool and integrate
the new HW-RTOS with any bus interconnect

State of the art 1/6

● The idea of a hardware operating system has been
addressed in some previous work

● In all of these proposals, the main idea is to
exploit the hardware acceleration by moving into
hardware the functionalities that consume more
CPU power

4

State of the art 2/6

● Silicon OS:
– it is a full-fledged operating system, in which the

majority of the ITRON functionality is implemented on a
coprocessor (Silicon TRON)

– hardware support is provided for event flags, semaphores,
timers, tasks, scheduler, control and interrupt management

– memory and time management, translation of system
requests and context switching are still implemented in
software

– the resulting software kernel is one third the size of the
original software one

State of the art 3/6

● FASTCHART:
– it is a real time kernel fully implemented in hardware
– key features are: priority scheduling, synchronization

primitives and interrupt handling
– It has two components that run concurrently: CPU and Real

Time Unit (RTU)
– the CPU is designed to execute a context switch in one clock

cycle
– the RTU is implemented on an ASIC and can be interfaced

with different system buses
– the RTU has also been commercialized (Sierra kernel)

5

State of the art 4/6

● The δ Soc Codesign Framework:

– it is built around the Atlanta kernel and allows a more
fine-grained partitioning with respect to Silicon OS

– it provides key RTOS features including multitasking
capabilities, event-driven and priority-based preemptive
scheduling, intertask communication and synchronization

– the framework is designed to provide automatic
configurability to support user-directed hardware/software
partitioning of the Atlanta kernel

State of the art 5/6

● HOPES:
– it is a RTOS-like system which allows run time partitioning

and allocation of reconfigurable FPGAs
– it supports both preemptive and non-preemptive scheduling

methods

● System Weaver:
– it is a hardware core that provides software designers a

common task management and communication abstraction
– it supports all popular methodologies (mutexes, semaphores,

monitors and message passing) for seamless integration within
existing applications and operating systems

6

State of the art 6/6
● Despite this amount of previous work and initial industrial attempts, at present,

a commercial operating system does not take advantage of hardware to
implement any of its functionalities

● In “V. J. Mooney and D. M. Blough, A hardware-software real-time operating
system framework for socs.” it has been pointed out that probably the reason is
because processors and hardware accelerators have historically resided on
separate chips

● Partitioning the functionality of the RTOS between hardware and software was
often impractical: the chip-to-chip communication would have overshadowed
the amount of speed-up provided by hardware

● But the situation is changing rapidly:
– the advent of SoCs has replaced slow chip-to-chip communication with faster on

chip communication
– after the partitioning of the operating system hardware and software functionality

can reside on the same chip

A generic system

● A system can be described as a constellation of
concurrent, interacting subsystems or tasks

● A task consists of computation and communication
nodes

● Tasks can communicate using different communication
styles:
– message passing, using the concept of ports two APIs are

provided:
● Port Send
● Port Receive (blocking and non-blocking)

– shared memory

7

Task 1 Task 2

Traditional OS

Posix support

scheduler

Communication
Nodes

Port Send

Port Receive

Computation
Node

Traditional approach OS POSIX-compliant
● Task1, Task2 and OS are implemented in software
● Communication nodes leverage the POSIX layer

provided by the traditional OS
● Scheduler is also software

CPU

Th1 Th2

Arbiter

Shared
Memory BusInterface

Ts1 Ts2 Ts3

Context
Switch Scheduler

OS kernel
Data

Handling

Application

Architecture

OS

SW HW

Traditional OS architecture
● The entire OS (Scheduler, Data Handling and Context Switch) is

software running on the CPU
● Software tasks (Tsn) run on the operating system
● Hardware tasks (Thn) are connected through the system bus

8

Proposed HW-RTOS Overview 1/2

● The POSIX support is replaced with dedicated data
handling mechanisms

● The scheduler is also replaced

● In the original tasks:
– the communication nodes need to be adapted in order to

communicate with the HW-RTOS

– the computation nodes remain unchanged

● Context switching is still performed by the embedded
processor

Task 2Task 1

HW-RTOS

Hardware schedulerPort_send_buffer
Active_input_events

Port_receive_buffer
Frozen_input_events

Communication
Nodes

Port Send

Port Receive

Computation
Node

Task 2

Data handling

Proposed HW-RTOS Overview 1/2
● Scheduler and data handling are hardware blocks

● Data and event buffers are used for handling the
communication

● Communication nodes are adapted to be connected to the hardware data
handling

9

Communication APIs

● The original communication APIs are automatically
expanded by our interface synthesis tool without
requiring any user interventions

● The user can continue to use the same POSIX-based API
without having to know about the presence of the HW-
RTOS in the original implementation

● The hardware part of the OS is automatically tailored by
using the specification of the tasks

● To handle the communication between OS, hardware and
software tasks, a pool of port-event handlers is
automatically generated to connect the HW-RTOS to the
processor memory

Synthesized CodeAPI Primitive

port_send_buffer[port]=data;
active_input_events[port] = 0x1;

pthread_mutex_lock (&p->mutex);
p->flag = p->total_readers;
p->value = data;
pthread_cond_broadcast (&p->reader);

port_send
(port, data)

if (mode == NBLK) {
v = port_receive_buffer[port];

}
else {

SchedYield(port);
v = port_receive_buffer[port];
frozen_input_events[port] =0x00;

}
return v;

pthread_mutex_lock (&pr->p->mutex);
if (mode == BLK && !(pr->p->flag && pr->mask)) {

pthread_cond_wait (&pr->p->reader, &pr->p->mutex);
}
v = pr->p->value;
pr->p->flag ^= pr->mask;
if (!pr->p->flag) {

pthread_cond_broadcast (&pr->p->writer);
}
pthread_mutex_unlock (&pr->p->mutex);
return v;

port_receive
(port, mode)

HW-RTOSeCos

Communication APIs comparison
• The interface is the same, to be compatible with POSIX layer
• Blocking ports have an associated event to signal new

activity

10

Context switching
● It occurs when a software task executes a blocking port_receive

● It is performed by a software routine that:
– pushes CPU registers into the stack

– reads the identifier of the next software task and sets the new PCB

– restores the context of the next software task

● It is implemented inside an interrupt service routine with
assembly code specific for the target processor

● The routine is triggered by the signal containing the id of the last
executed task

● Only one interrupt line is needed to handle all software tasks

Context Switch Routine

11

● It is described in algorithmic C and then synthesized with
the Cyber behavioral synthesis tool

● It has three ports:

– INPUT: CallRTOS (the task id of the last executed task), waitPort (the port
on which the task is blocked)

– OUTPUT: nextSWTask (communicates the scheduler decision)

● It consists of two main parts:

– Initialization: all tasks are executed once

– Main loop:

● Data handling phase

● Scheduling phase

Hardware support

CallRTOS

waitPort
nextSWTask

HW-RTOS

Behavioral C description of
HW-RTOS

12

HW-RTOS

Port_receive_buffer

Frozen_input_events

Data
handling

Port_send_buffer
Active_input_events

nextSWTask

callRTOS

waitPort

….

1

2

n
N21

HardwareScheduler

Data handling phase
● When a task writes, it uses the port_send_buffer and the associated

active_input_event is set (port_send API)

● Data and event are then copied into the port_receive_buffer and
frozen_input_events

…
. nextSWTaskPriority

Encoder

callRTOS

N: number of SW tasks

+(N-2)

+(N-1)

+1

+2

…

…

~
~

Wait
port
list

frozen
Input

events

Scheduling phase
● Round robin loop where tasks are organized in a wheel

● callRTOS is received and then the task pointer is incremented

● Based on the priority created, the first schedulable task is returned with
the signal nextSWTask, using a hardware interrupt

13

Th1 Th2

Arbiter

Shared
Memory BusInterface

Ts1 Ts2 Ts3

Context
Switch Scheduler

OS kernel
Data

Handling

Application

Architecture

RTOS

port_send_buffer
port_receive_buffer
active_input_events
frozen_input_events

nextSWTask

CallRTOS
waitPort

SW HW

Hardware
Interrupt

CPU

HW-RTOS Architecture Summary
● The OS is partitioned:

– Scheduler and Data Handling are hardware blocks
– Context Switch is still software running on the CPU

● CallRTOS and waitPort are signals directed from the sw to the hw part of the
OS and are routed through the bus

● nextSWTask is connected to the hardware interrupt port of the CPU

● Buffers and events are handled in the shared memory

Main reasons for speedup

● Inter-tasks communication:
– The hardware can update memory locations by direct

memory access, while the traditional OS generates
bus transactions

● Scheduling:
– The scheduling algorithm is implemented in hardware

14

Case study
● Software for Image filtering

– Index Control
– Data Retrieve
– Filter

● Operating systems used:
– eCos (with POSIX support)
– HW-RTOS

● Synthesized with Cyber: NEC behavioral synthesis tool
● Simulated in Classmate: NEC cycle accurate

hardware/software co-simulator

Index
Control

Data
Retrieve Filter

t00Line
inready

outready

Column

Control

Mem

t22

…

Context
Switch

Data
Retrieve

Data
Retrieve

Context
Switch

eCos
HW-RTOS

Initialization Index
Control

Data
Retrieve Multiplier

Initialization Index
Control

Data
Retrieve

MultiplierContext
Switch~

~ ~
~

~ ~
~ ~

~
~ ~

~
~ ~

~~

407,274 12,197 10,048 10,04818,268 71,545

1,507 2,394 944

Context
Switch

1,289 2,549944

1st iteration = 8,112 clock cycles

1st iteration = 122,106 clock cycles

Case study – results 1/3
● Comparison for completing the full image filter:

– Total speedup: 25.4

– Initialization phase: 257.6

– First iteration: 17.86

– Context switching: 10.6

15

eCos HW-RTOS

HWSWSW
Backup of
Registers

Poll for
next task

166

717

61

4

10,048 Restore the values
of Registers

944

~

~ End of context switch

Data handling
& scheduling

Case study – results 2/3
● Data handling & scheduling in the HW-RTOS can be performed

in parallel

1

10

100

1,000

10,000

100,000

1,000,000

Port Operations

N
um

be
r o

f C
lo

ck
 C

yc
le

s

eCos 10,492 140,151
HW RTOS 261 2,011

port_send port_receive

Case study – results 3/3
● Comparison between port operations in eCos and HW-RTOS

16

Area Synthesis Results

● Technology library used:
– 0.15 µm standard cell

● Number of equivalent gates:
– ~10K (9280)

● Area:
– 104,765 µm2

Conclusions

● The role of software is becoming more and more
important in SoC design

● SoC architectures can significantly benefit from
automated techniques for shifting functionalities
of the OS into hardware

● We have shown some examples in which a small
hardware area (less then 10k gates) results in 15X
speedup

17

Thank you for your for attention

