Hardware/Software Partitioning of
Operating Systems:
a Behavioral Synthesis Approach

Sathish Chandra Francesco Regazzoni Marcello Lajolo
NEC Laboratories America ALaRI — Unversity of Lugano NEC Laboratories America
Princeton, NJ, USA Lugano, CH Princeton, NJ, USA
sathish@nec-labs.com regazzoni@alari.ch lajolo@nec-labs.com

NEC

www.alari.ch www.nec-labs.com

Outline

. Motivations
. State of the art
. Traditional system overview
. Our solution:
- Overview
- Communication APIs
- Context switching

- Hardware support
- HW-RTOS full architecture summary

. Case study and Results

. Conclusions

@ L=

Motivations

. History of operating systems:

- Initially created for supporting and scheduling the tasks that
run on a CPU

— Now they are a very complex infrastructures

- Modern operating systems are designed to schedule and
support any conceivable combination of applications

. This strategy makes sense for desktop systems,
workstations and mainframes, but...

. It is not adequate for embedded systems

Embedded Operating Systems

. In embedded systems:
- memory size is a constraint
- response time is very often critical (real time embedded systems)
. Inan SoC, each processor should perform at least two tasks:
- the task for which it is designed
- the task that provides communication with the rest of the system

. Any such processor that performs more than one task needs some
kind of operating system to:

— schedule the tasks
- allocate resources

- prevent deadlocks

@ L=

Why hardware implementation of
operating systems?

. Modern behavioral hardware synthesis tools allow to
extract from the original Operating System kernel
significant portions of its functionality and re-implement
them in hardware without the need to perform major
code modifications

. How to achieve better performance:

- select functionalities of a traditional operating system
described in C language

- synthesize them using a behavioral synthesis tool and integrate
the new HW-RTOS with any bus interconnect

W NEC

State of the art 1/6

. The idea of a hardware operating system has been
addressed in some previous work

. In all of these proposals, the main idea is to
exploit the hardware acceleration by moving into
hardware the functionalities that consume more
CPU power

@ L=

State of the art 2/6

. Silicon OS:

- it s a full-fledged operating system, in which the
majority of the ITRON functionality is implemented on a
coprocessor (Silicon TRON)

- hardware support is provided for event flags, semaphores,
timers, tasks, scheduler, control and interrupt management

- memory and time management, translation of system
requests and context switching are still implemented in
software

- the resulting software kernel is one third the size of the
original software one

State of the art 3/6

. FASTCHART:

— itis areal time kernel fully implemented in hardware

- key features are: priority scheduling, synchronization
primitives and interrupt handling

— It has two components that run concurrently: CPU and Real
Time Unit (RTU)

- the CPU is designed to execute a context switch in one clock
cycle

- the RTU is implemented on an ASIC and can be interfaced
with different system buses

- the RTU has also been commercialized (Sierra kernel)

@ L=

State of the art 4/6

. The & Soc Codesign Framework:

— it is built around the Atlanta kernel and allows a more
fine-grained partitioning with respect to Silicon OS

- it provides key RTOS features including multitasking
capabilities, event-driven and priority-based preemptive
scheduling, intertask communication and synchronization

- the framework is designed to provide automatic
configurability to support user-directed hardware/software
partitioning of the Atlanta kernel

State of the art 5/6

. HOPES:

- it is a RTOS-like system which allows run time partitioning
and allocation of reconfigurable FPGAs

- it supports both preemptive and non-preemptive scheduling
methods

. System Weaver:

— it is a hardware core that provides software designers a
common task management and communication abstraction

- it supports all popular methodologies (mutexes, semaphores,
monitors and message passing) for seamless integration within
existing applications and operating systems

@ L=

State of the art 6/6

. Despite this amount of previous work and initial industrial attempts, at present,
a commercial operating system does not take advantage of hardware to
implement any of its functionalities

. In*“V.J. Mooney and D. M. Blough, A hardware-software real-time operating
system framework for socs.” it has been pointed out that probably the reason is
because processors and hardware accelerators have historically resided on
separate chips

. Partitioning the functionality of the RTOS between hardware and software was
often impractical: the chip-to-chip communication would have overshadowed
the amount of speed-up provided by hardware

. But the situation is changing rapidly:

- the advent of SoCs has replaced slow chip-to-chip communication with faster on
chip communication

- after the partitioning of the operating system hardware and software functionality
can reside on the same chip

A generic system

. A system can be described as a constellation of
concurrent, interacting subsystems or tasks

. A task consists of computation and communication
nodes

. Tasks can communicate using different communication
styles:

— message passing, using the concept of ports two APIs are
provided:

. Port Send
. Port Receive (blocking and non-blocking)
- shared memory

W L=

Traditional approach OS POSIX-compliant

. Taskl, Task2 and OS are implemented in software

. Communication nodes leverage the POSIX layer
provided by the traditional OS

. Scheduler is also software

'\ /

\1 scheduler
OComputation
Node
Communication

Traditional OS] , Port Send
} Nodes

D Port Receive
NEC

_*D\

Task 2

Traditional OS architecture

. The entire OS (Scheduler, Data Handling and Context Switch) is
software running on the CPU

. Software tasks (Tsn) run on the operating system

. Hardware tasks (Thn) are connected through the system bus

sw EHW Application
Tst Ts2 T3 || Tht | | The
3 E [
e, Ay, A, e
i1 OS kernel
Context Data 0s
Switch ‘ Handling ’ Scheduler
T
Shared
Memory ‘ BusInterface Archi +
I
cPU I 1 rchitecture
< P Arbiter

@ L=

Proposed HW-RTOS Overview 1/2

. The POSIX support is replaced with dedicated data
handling mechanisms

. The scheduler is also replaced

. In the original tasks:

- the communication nodes need to be adapted in order to
communicate with the HW-RTOS

- the computation nodes remain unchanged

. Context switching is still performed by the embedded
processor

MEC

Proposed HW-RTOS Overview 1/2

Scheduler and data handling are hardware blocks

Data and event buffers are used for handling the
communication

Communication nodes are adapted to be connected to the hardware data

handling
L —] T~
Task 1 S |
as \ Task 2
Q ZO”—Se”d—b”“er Hardware scheduler) Computation
ctive_input_events
HW-RTOS , Port Send }Communication
Nodes

Port_receive_buffer D Port Receive
tozen_input_events

rIEC

Communication APIs

. The original communication APIs are automatically
expanded by our interface synthesis tool without
requiring any user interventions

. The user can continue to use the same POSIX-based API
without having to know about the presence of the HW-
RTOS in the original implementation

. The hardware part of the OS is automatically tailored by

using the specification of the tasks

. To handle the communication between OS, hardware and
software tasks, a pool of port-event handlers is
automatically generated to connect the HW-RTOS to the
processor memory

MEC

Communication APIs comparison

* The interface is the same, to be compatible with POSIX layer

* Blocking ports have an associated event to signal new

activity

API Primitive

Synthesized Code

eCos

HW-RTOS

port_receive
(port, mode)

pthread_mutex_lock (&pr->p->mutex);

if (mode == BLK && !(pr->p->flag && pr->mask)) {
pthread_cond_wait (&pr->p->reader, &pr->p->mutex);

}

v = pr->p->value;

pr->p->flag = pr->mask;

if (pr->p->flag) {
pthread_cond_broadcast (&pr->p->writer);

}

pthread_mutex_unlock (&pr->p->mutex);

return v;

if (mode == NBLK) {
v = port_receive_buffer[port];
}
else {
SchedYield(port);
v = port_receive_buffer[port];
frozen_input_events[port] =0x00;
}

return v;

port_send
(port, data)

pthread_mutex_lock (&p->mutex);
p->flag = p->total_readers;

p->value = data;
pthread_cond_broadcast (&p->reader);

port_send_buffer[port]=data;
active_input_events[port] = 0x1;

K

rIEC

Context switching

. It occurs when a software task executes a blocking port_receive

. Itis performed by a software routine that:
— pushes CPU registers into the stack
- reads the identifier of the next software task and sets the new PCB
- restores the context of the next software task

. It is implemented inside an interrupt service routine with
assembly code specific for the target processor

. The routine is triggered by the signal containing the id of the last
executed task

« Only one interrupt line is needed to handle all software tasks

MEC

Context Switch Routine

void SwitchContext() {

S/ Supervisor mode software interrupt function

// Push the CPU registers into Stack

' ("STMFD sp!,{r0-r3}"); // push ro-rs

"LDR r0,%0" ::°m” (currPCB)"): // load pch[0] into r0
MRS rl, spsr’):
"STMIA rol, {r1}
STMIA r0!, {Ir}”

copy spst into r1
// store spst into peb[0]
// store Ir (return address) into peb[1]

// location of

"ADD r0, r0, #8"); // location of
PSTMIA 10, {r12-r14}7); // stor
sasm("SUB r4, r0, #527); // ri = pch,
stasm("LDMFD spl, {r0-r8}7); // r0, 13 restored from stack
szasm("STMIA rd, {r0-r8}"): // 16, r stored in pch
saasm("ADD rd, r4, #44"); // update v to point to pobf13]
ssasm("LDMFD spl, {r0}"); // pop from stack r11
ssasm("STMIA rd, {r0}"); // store r11 in pcb
seasm("LDMFD spl, {r0-r3}"); // pop from stack
7asm("ADD rd, rd, #47); // pcbf14]

seasm("STMIA rd, {r3}"); // store 712 (ip) in pcb

// Get the NextSWTask from the HW-RTOS

securrTASK = port_receive(&nextSWTask, NBLK); // .
20ecurrPCB= &PCB[currTASK*PCB-OFFSET]; // ...
// Pop the CPU Registers from the stack

21 asm("LDR r0,%07:"m” (currPCB)"); // load peba0] into
o

22asm("LDMIA r0l, {rl,r14}"): // copy POB, ret address into
Ri, Ri4

saasm("MSR spsrofsxc, r1%); 4/ copy the saved state regisier

r15-r14 into peh

into usr spsr
scasm("LDMIA 10, {r0-r14}");: // load from peb vo-r14
ssasm("NOP™); // Debug

ssasm("MOVS pe, r14"); // updare program counter

=}

rIEC

10

Hardware support

. Itis described in algorithmic C and then synthesized with
the Cyber behavioral synthesis tool

. It has three ports Cw» nextSWTask

waitPort HW-RTOS

—»|

— INPUT: CallRTOS (the task id of the last executed task), waitPort (the port
on which the task is blocked)

- OUTPUT: nextSWTask (communicates the scheduler decision)

. It consists of two main parts:

— Initialization: all tasks are executed once
- Main loop:
. Data handling phase

%7 . Scheduling phase ~NEC

Behavioral C description of
HW-RTOS

/* SHARED MEMORIES */

o1 shared mem(0:32) port-send-buffer[NUM-PORTS];
oz shared mem(0:32) port_receive_buffer[NUM_PORT:
csshared mem(0:32) frozen_input _events[NUM_PORT
0+ shared mem(0:32) active_input _events[NUM_PORTS];
/% 1/0 PORTS %/

csin int eallRTOS;

coin int waitPort;

o7 out int nextSWTask;
/% CALL ALL TASKS THE FIRST TIME */

os for(int i=0; i<NO_SW_TASKS; i++) {
08 nextSW Tas i

w0 portreceive(callRTOS, BLK);

11 wait_port_list[eallRTOS] = waitPort;

2}

/% MAIN LOOP */

sswhile(1) {

/* DATA HANDLING*/

4 for(int port=0; port<NUM_PORTS; port++) {

w5 if(activeinput_events[port] == 1) {

s port_receive_buffer[port]= port_send_buffer[port];
active_input_events[port];

w7 frozen_input_events[port

4 active_input_events[port]= 03
w ¥
= }
2 it-portlist[callRTOS] = waitPort;

'HEDULER */

hile(1) {

2 int newTaskPtr;

2 newTaskPtr = HardwareScheduler(callRTOS);
25 if(newTaskPtri—=-1)

w

20 wait_port_list[newTaskPtr] = 0x00;
= nextSWTask = newTaskPtr;

2 break;

Y

= port_receive(callRTOS, BLK):

Bl

ks
ks
rIEC

11

Data handling phase

. When a task writes, it uses the port_send_buffer and the associated
active_input_event is set (port_send API)

. Data and event are then copied into the port_receive_buffer and
frozen_input_events

HW-RTOS

nextSWTask

Data

handling
— — Port_send_buffer
n
waitPort] Q Active_input_events
1|2 N
callRTOS H Port_receive_buffer

}HardwareScheduIer

Frozen_input_events

W NEC

Scheduling phase
. Round robin loop where tasks are organized in a wheel
. €allRTOS is received and then the task pointer is incremented

. Based on the priority created, the first schedulable task is returned with
the signal nextSWTask, using a hardware interrupt

,,,,, Do

+2 '|'
callRTOS
+1 Wait frozen
port Input Priority _nextSWTask
= \‘ list events Encoder
T +(N-D—] 3

eeeeeeeee -

W N: number of SW tasks NEC

12

HW-RTOS Architecture Summary

. The OS is partitioned:

- Scheduler and Data Handling are hardware blocks
- Context Switch is still software running on the CPU

. CallRTOS and waitPort are signals directed from the sw to the hw part of the
OS and are routed through the bus

. nextSWTask is connected to the hardware interrupt port of the CPU

! Application
Tsl Ts2 Ts3 Thi Th2) ,,,,,,,,,,,,,,,,,, N
| nextSWTask |
s S - L — ; AT E
{CallRTOS : °5'C‘°';‘"T = § RTO
! ! waitPort Sl g onfex ata ’ Scheduler ‘1 Dot S
iSW 777777777777777 - ; Switch ! Handling - : HW‘
{ port_send_buffer 4
i port_receive_buffer , ‘ T BusInterface ‘
: active_input_events : I I Architecture
> Arbiter
NEC

Main reasons for speedup

. Inter-tasks communication:

- The hardware can update memory locations by direct
memory access, while the traditional OS generates
bus transactions

. Scheduling:

- The scheduling algorithm is implemented in hardware

@ L=

13

Case study

. Software for Image filtering

- Index Control Control .
- Data Retrieve Line b
- Filter e e) e [1] T
22
. Operating systems used: petreedy |
— eCos (with POSIX support) Mem
~ HW-RTOS

. Synthesized with Cyber: NEC behavioral synthesis tool

. Simulated in Classmate: NEC cycle accurate
hardware/software co-simulator

ki

PrEC
. Comparison for completing the full image filter:
- Total speedup: 25.4
- Initialization phase: 257.6
— First iteration: 17.86
- Context switching: 10.6
Lo ! Ind Context Data Context Lot e (, Data
T ‘ndex onte: i
I,nma?llzaﬂon Control | Switch Retrieve Switch Mump!'”]) B ‘ Retrieve
407,274 12,197 10,048 18,268 10,048 71,545
1st iteration = 122,106 clock cycles
D e >
eCos
HW-RTOS
T Index Context Data Context e o Data
‘ Initialization Control Switch Retrieve Switch Multiplier ‘) .‘ Retrieve
1,507 2,394 944 1,289 944 2,549 '
1st iteration = 8,112 clock cycles
e > NEC

14

Case study — results 2/3

. Data handling & scheduling in the HW-RTOS can be performed

in parallel
SW w Hw
(| HaE
944 ‘ }
N |}

?7 £ HW RTOS

Case study — results 3/3

. Comparison between port operations in eCos and HW-RTOS

1,000,000

100,000

10,000 ~

1,000 H

100

Number of Clock Cycles

10

1

port_send

port_receive

meCos

10,492

140,151

261

2,011

Port Operations

rIEC

15

Area Synthesis Results

. Technology library used:
- 0.15 um standard cell

. Number of equivalent gates:
_ ~10K (9280)

. Area:
— 104,765 pm?

Conclusions

. The role of software is becoming more and more
important in SoC design

. SoC architectures can significantly benefit from
automated techniques for shifting functionalities
of the OS into hardware

. We have shown some examples in which a small
hardware area (less then 10k gates) results in 15X
speedup

@ L=

16

Thank you for your for attention

MEC

17

