
1

Copyright 2006 - Multicore Association

Multicore Association
Overview

EDPS, April 2006
Sven Brehmer & Kumar Venkatramani

Copyright 2006 - Multicore Association

Multicore Association – Objectives & activities

Multi-core ecosystem enablement

Industry-wide participation
Including processor vendors, infrastructure developers, device
manufacturers, and software and application developers.

Current efforts
Communications & Resource management API’s
Debug API
Transparent Inter Process Communication (TIPC)

2

Copyright 2006 - Multicore Association

So why are standard API’s important?

Standard interfaces simplify development and management of
multi-core software and reduces time to market

They can broaden the availability of products

They enable software re-use
From ESL modeling to real target hardware
From product to product

They enable more vendor choice

Copyright 2006 - Multicore Association

RAPI/CAPI – Objectives, goals & target domain

To provide a standardized APIs for:
Management, scheduling, and synchronization of work entities among cores or
within cores - RAPI
The basic elements of communication and synchronization between cores or
among closely distributed processors – CAPI

Provide API for source code portability
The primary goal of this effort is to specify an API, not an implementation

RAPI/CAPI Target domain
Embedded Multi-processing
Task to task communication
Multiple cores on a chip & multiple chips on a board
Heterogeneous & homogeneous systems

Cores, interconnects, memory architectures, OSes
Optimized for data plane
Scalable: 2 – 1000’s of cores
Allow implementations with significantly lower latency, overhead & memory
footprint than MPI and TIPC

3

Copyright 2006 - Multicore Association

CAPI/RAPI - Applications and Use cases

We are looking for real use cases!!
Currently proposed

Signal processing
Multi-media processing
Wireless base station
Network processing
Distributed Object Model
Simulation

Copyright 2006 - Multicore Association

Relationship to Other Standards & Technologies

OSI
TCP/IP (or sockets)
UDP/IP
TIPC
RIO
Sun RPC
CORBA
TTL

OpenMP
MPI
MPIRT
Embedded MPI
I2O
OSEK Com
Linx
Others?

Overlap with and potential usefulness (or not) for the CAPI

Similar synergistic or overlapping efforts?

RapidIO
MIPI
Khronos

CVTA
OpenMax
Others?

4

Copyright 2006 - Multicore Association

What is CAPI?

An API to support synchronization and data
movement between cores in a closely distributed
embedded system

It is agnostic to the type of:
Core
Memory architecture
Physical connection
Logical topology
OS

Copyright 2006 - PolyCore Software & Multicore Association

Desired: Transparent multi-processing

Hardware
CPU/DSP+I/O

Hardware
CPU+I/O

Linux/iTron/RTOS

USB,
Bluetooth

TCP/IP

Middleware

RTOS

User Application Software
Task1A

Task2A
Task3A

User Application Software

Task1B Task2B
Task3B

IPCF
Priority 1

Priority 2

Priority 3

Multi-Channel Multi-Priority

BUS Level 1

BUS Level 2

BUS level 3

Multi-Level Bus Cross Bar Network
Physical Connection

AND/OR AND/OR

CAPI

Different/Multiple

Operating Systems

Connections - Physical & Logical

One Messaging API

5

Copyright 2006 - Multicore Association

What is resource management & RAPI?

A RAPI entity manages…

binding of application elements to
processing resources

Static and dynamic decisions

memory
Allocation, de-allocation
Static and dynamic support

Programming model
Explicit task based parallelism
No compiler directives

Control plane only
No data plane

Memory allocation and de-
allocation

Private and shared memory
NUMA (disparate memory
domain) support

Task
state management

Creation/deletion
Suspension/resumption
Basic synchronisation

scheduling
Processing resource class
based, enabling…

Dynamic load balancing
Dynamic power management

Enabling static and dynamic
logical reconfiguration

Context management
Save/restore

Copyright 2006 - Multicore Association

RAPI Target Architectures

Heterogeneous processing resources
ISA architectures
Non-ISA based architectures
I/O devices

Heterogeneous memory architectures
Shared, unified, non-uniform architectures

Heterogeneous interconnect topologies

6

Copyright 2006 - Multicore Association

RAPI Goals

“To provide a standardised API for the management,
scheduling and synchronisation of resources
including, but not limited to, tasks, processing and
memory resources.”

Secondary goals…
Complimentary to CAPI
Support existing operating systems
Support existing and emerging middleware technologies
Support language based multicore abstractions

Copyright 2006 - Multicore Association

CAPI and RAPI relationship

The RAPI and CAPI combine to form a layer on top of which other abstractions or
applications may be built

RISCRISC

Interconnect #1

RISC RISCDSP Hardware
AcceleratorsIO Devices

RISCRISC

Interconnect

RISC RISCDSP Hardware
Accelerators IO Devices

M
em

or
y

ab
st

ra
ct

io
ns

RAPI D
eb

ug
 m

an
ag

em
en

t

R
un

tim
e

S
ys

te
m

O S

CAPI

O
S

Figure : Example system embodiment showing a single resource domain

ApplicationApplication

HW
Accelerators

Interconnect architecture

HW Accelerators
Instruction set
architecture(s)

Interconnect architecture

Further abstraction (OS/middleware)

Application

Figure : Example system embodiment showing two resource domains

Interconnect topology

Instruction set
architecture(s)

RAPI RAPICAPICAPI

7

Copyright 2006 - Multicore Association

RAPI and CAPI Interaction

RAPI describes tasks using task control blocks (TCB)
CAPI transports task control blocks and optional data within and
between resource management domains
RAPI schedules tasks to processing resources
RAPI manages task execution contexts

Processing Resource A Processing Resource B

RAPI

CAPI

TaskNew(…)

Application/middleware Application/middleware

Upcall

RAPI
stack

(?)

TCBTCB

Copyright 2006 - Multicore Association

struct pthread_attr_t {
void *stackaddr;
size_t stacksize;
int detachstate;
int schedpolicy;
struct sched_param param;
int inheritsched;
int contentionscope;

};

int pthread_create(
pthread_t *tid,
const pthread_attr_t *attr,
void *(*start)(void *),
void *arg);

Scheduling with POSIX pThreads

Policy oriented definition
Implicit scheduler structure
definition

Implies processing resource
homogeneity

FIFO: SCHED_FIFO

Round robin: SCHED_RR

???: SCHED_OTHER

8

Copyright 2006 - Multicore Association

Scheduling with RAPI tasks

Hierarchy oriented definition.
Explicit scheduler structure

RAPIReturn_t RAPITaskNew(
RAPITCB_t *pTask,
BOOLEAN IsBlocked);

struct RAPITCB
{

U32 (*fpTask)(void *);
U32 *pParams;
U32 *Metric;
U16 SchedulingNode;
// Implementation
// specific params
...

};

Dispatch NodesDistribution NodesEntry Nodes

Ready Queues

Ready State

Application
Decision Node

Hierarchy

Distribution
Decision Nodes

Dispatch NodesDistribution NodesEntry Nodes

Ready Queues

Ready State

Application
Decision Node

Hierarchy

Distribution
Decision Nodes

Scheduling
definition

System
Analysis

Static Scheduler
configuration

Copyright 2006 - Multicore Association

Configuration Diagram - Simple example

Programmer’s
visualisation

Scheduling entry
Nodes

Ready Queues

Processor
instances

DSP #1

RISC #1

MAC/PHY

9

Copyright 2006 - Multicore Association

Configuration Diagram – Complex Example

Task Ready State

Processor
instances

DSP #1

DSP #2

RISC #1

RISC #2

RISC #3

MAC/PHY

Platform
scheduling

(Load balancing,
power

management).

Processor
classes

Platform
Centric

Hierarchy

DSP Pool

RISC Pool

MAC/PHY

Scheduling entry
Nodes

Ready Queues
FIFO

WFQ

Application
Centric

Hierarchy

FIFO

FIFO

Priority

Application
scheduling

Programmer’s
visualisation

Copyright 2006 - Multicore Association

RTP
Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layerRTP

Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layerRTP

Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layer

Platform/application scalability

Platform/application scalability?
Core level power management?

Input Output
RTP

Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layer

RAPI/CAPI abstraction layer

RISCDSP MAC/PHYPHY RISC RISCDSP

RTOSBIOS

10

Copyright 2006 - Multicore Association

DSPDSP RISCRISC RISC

RTP
Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layerRTP

Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layerRTP

Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layer

Core level power management

Input Output
RTP

Protocol
Initiation

Encoder
UDP

Protocol
Initiation

IP
Protocol
Initiation

MAC
layer

RAPI/CAPI abstraction layer

RTOSBIOS

MAC/PHYPHY

Presented Load

DSP RISC RISCRISCDSP DSPDSP DSPDSP RISCRISC RISCRISCRISCDSP RISCDSPDSP RISCRISC RISCRISCRISCDSP

Platform/application scalability?
Core level power management?
Efficiency?

Copyright 2006 - Multicore Association

What can RAPI do for you?

Who are you?
An OS vendor

A uniform foundation for present and future products
Enhanced interoperability
Larger addressable market

A chip company
More application achievable performance (MIPS/mm2,
MIPS/mW)
Better determinism
Reduced support burden

A software developer
More scalability (source code, binary?)
Better ease of use
More powerful development methodologies

11

Copyright 2006 - Multicore Association

Targets for the Debug Working Group

Embedded Multicore Systems.
Extend to Server, Client, HPC?

Many CPUs on a chip, perhaps many chips on a board/system.
Homogeneous (all of the same type of core) or heterogeneous.
Various runtime models:

Single OS image; distributed processes, threads.
Multiple OS images, same or different.
Less than full OS on most or all cores, e.g. just a programming
model runtime.

Variety of programming models:
Multiple parallelism techniques, e.g. high-level functional and
pipeline decomposition, coarse-grain & fine-grain data
decomposition.
Range of communication models, i.e. CAPI, including streaming
communication, lightweight message-passing, shared memory.

Not limited to a specific HW/RT/programming model like SMP.
Integrating multiple vendors & tool chains: inter-operation.

Copyright 2006 - Multicore Association

Multicore Debug Challenges

Parallel programming in general: multiple
simultaneous threads of execution, such as
synchronization bugs
Differing user experiences for heterogeneous
elements; tool chain and vendor compatibility issues
Mapping from lower-level implementation constructs
(e.g. memory, registers) to higher-level programming
model constructs (e.g. messages, synchronization;
see CAPI)
Scale: what do we do beyond 2, 4, 8 cores? Need
aggregate control and state inspection.

12

Copyright 2006 - Multicore Association

Current Debug Initiatives

Identifying and tying high-level requirements for multicore
debugging to specific requirements on underlying
infrastructures, such as OS or runtime layers.

Extending existing debug interfaces in a standardized way to
meet the needs of multicore debugging.

Standardizing the connection between JTAG interfaces and
debuggers. More specifically, enabling third-party debuggers to
control systems with multiple cores with different JTAG
interfaces from multiple vendors.

We will seek to identify appropriate interfaces and drive
standardization to enable a richer and more uniform debugging
experience on multicore systems.

Copyright 2006 - Multicore Association

Industry effort

CAPI Draft Contributors
Anant Agarwal Tilera
Todd Brian Mentor
Sven Brehmer PolyCore Software
Felix Burton Wind River
Robert Craig QNX
Simon Davidmann Imperas
Bill Dittmann Quadros Systems
Tomas Evensen Wind River
Peter Flake Imperas
Shay Gal-On PMC-Sierra
Jim Holt Freescale Semiconductor
Matthew Hall Imperas
Maarten Konin Wind River
Mark Lippett Ignios
Radzy Wind River
Kumar Venkatramani Softjin

About a dozen other companies have participated in our face to face meetings
Leaders

Sven Brehmer (President, PolyCore Software) – CAPI Chair
Mark Lippett (CTO, Ignios Limited) – RAPI Chair
Jim Holt (Manager, Systems Modeling & Software Enablement Group, Freescale)

13

Copyright 2006 - Multicore Association

Status CAPI/RAPI

Working groups formed in August 2005

Three face-to-face meetings with conference calls
between

Primary and secondary goals defined

Use cases will be defined to drive requirements and
the API specifications

Copyright 2006 - Multicore Association

CAPI Draft time line goal

Use cases 2 months

Specific Requirements 2 months

Iteration 1 specification 2 months

Iteration 2 specification 2 months

Draft specification review 1 month

14

Copyright 2006 - Multicore Association

We want your input & Feedback

Get involved!

