On the Marketing of Multicore

Matthew C. Bell Patrick H. Madden
Santa Clara University SUNY Binghamton
mbell@scu.edu pmadden@acm.org

In the past few years, microprocessor architectures have under-
gone a fundamental change. Driven by a variety of factors, lead-
ing designs have transitioned from single monolithic processors to
“multicore” configurations. In this paper, we survey prior work on
parallel processing systems, and discuss the enthusiasm for multi-
core designs from a psychological perspective.

We argue that the semiconductor industry faces a difficult chal-
lenge. There is wide agreement that single-core processing rates
have peaked, and that any further significant progress is unlikely.
The shift towards parallel architectures is not necessarily a solu-
tion, however: parallel software and applications are fundamentally
different from their serial counterparts, and the market for parallel
computing has never been particularly large. Without a high vol-
ume and high profit product such as the consumer microprocessor,
it is unclear where revenue will come from to drive forward with
Moore’s law scaling.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: CAD

General Terms
Algorithms

Keywords

Multicore, Wishful Thinking, Interconnect Optimization

1. INTRODUCTION

In this paper, we consider the commercial prospects for multi-
core microprocessors. We focus specifically on microprocessors in
“personal computers;” sales of these chips have provided a great
deal of the revenue required to support the semiconductor industry.

Under pressure to increase performance, designs have shifted
from a single monolitic processor to multicore configurations. This
shift began with the introduction of the IBM PowerPC Power4 in
2001; AMD, Sun, Intel, and Freescale have also announced or re-
leased multicore designs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDP’ 06 April,2006,Monterey,California.

Copyright 2006 ACM 0-89791-88-6/97/05 ...$5.00.

While the shift in some respects “solves” many problems (power
being foremost), we argue that this comes with a heavy price. While
many in the field are enthusiactic about multicore designs, we present
a contrarian view. We argue that multicore designs will likely be a
commercial failure for the consumer market.

To be clear: we restrict our focus to personal computers, where
parallel computing has gained little traction despite many years of
effort. Without widespread consumer adoption of parallel com-
puting, the prospects for the semiconductor industry appear bleak.
Moore’s law[45] holds because it is profitable for semiconductor
manufacturers; for fourty years, large numbers of consumers have
paid high prices for the highest performance designs. The revenue
from this market has enabled the research and development needed
to move along the exponential growth path. If multicore micropro-
cessors fail to impress consumers, sales will fall flat, and revenue
will be reduced. A shortage of revenue will have a ripple effect
throughout the semiconductor and EDA industries.

Our objective with this paper is to provide a counterbalance to
the surge of research into “server farm on a chip” parallel com-
puting[54], and to shed some light on to why there is such great
enthusiasm for it. We also hope to spark debate on the appropriate
direction of consumer microprocessor designs.

To provide context, in Section 2 we discuss prior attempts to
commercialize parallel computing systems. Many different archi-
tectures, programming languages, compilers, and software libraries
have been developed. Over the past fourty years, there have been
many predictions of an impending golden age of parallel comput-
ing; this has yet to come to pass.

Despite the lack of commercial success in parallel computing,
a number of major semiconductor manufacturerers have clearly
stated that their long term plans are to move in this direction. Simi-
larly, a great many researchers are actively working on the design of
multicore architectures, and government funding[10] has been ear-
marked to support them. Dissenting opinions are scarce; Section
3 presents research performed by psychologists to explain why so
many talented engineers and scientists may be “getting it wrong.”

We conclude this paper with a short summary, and a call for vi-
able suggestions as to what a consumer-grade “killer application”
for massively parallel systems might be. Sales of vast numbers of
laptop and desktop personal computers have provided much of the
revenue for the semiconductor industry. The fundamental nature of
the processors in these computers is changing; how this change will
impact consumer demand has received very little public discussion.

2. ABRIEFHISTORY OF PARALLEL PRO-
CESSING

Parallel processing has a long history[1]. Unfortunately, history
has not been particularly kind to commercial ventures. While some

Total time required to complete a task

v

Serial

Single processor

Two processors

Three processors

Ideal speedup with
no serial component

Ideal speedup with serial

Speedup

Actual speedup due to overhead

Number of processors

Figure 1: Amdahl’s law suggests that the speedup possible through parallel computation is asymptotic; while “parallel” portions
have reduced run times, the serial portions are unaffected. Scaling beyond a few processors is rarely beneficial; communications

overhead can in some cases result in a slowdown.

scientific applications can utilize parallelism (and achieve remark-
able leaps in performance)[24], parallel processing has failed to
reach a broad market.

A difficulty with parallel computing is that many problems have
elements that are inherently serial. Amdahl’s law[1] is well known;
if a computing task has a serial component which takes S time,
and a parallel component which takes P time, the run time with n
processors is at best S+ P/n. In practice, communications over-
head between processors increases run times, and the amount of
parallelism that can be exploited may not scale to large numbers of
processors. This is illustrated in Figure 1.

If personal computers are to utilize multicore architectures effec-
tively, some combination of the following must occur.

o Individual applications must utilize multiple processor cores.
This is challenging, as parallel programming is known to be
difficult. Further, many applications have relatively little in-
herent parallelism. Increasing problem sizes to better exploit
parallelism (as done in [24]) is not practical for consumers
who expect their applications to be interactive.

e Multiple compute intensive applications must run simulta-
neously. While there is some demand for simultaneous ap-
plications (e.g., an MP3 player in conjunction with a word
processor), multitasking operating systems with single pro-
cessor cores are frequently adequate. While a modern oper-
ating system may have many processes, the majority of these
processes are idle at any given moment.

2.1 Parallel Hardware

On the surface, multi-processor systems are appealing on a num-
ber of levels. Algorithms that can be run in parallel can utilize mul-
tiple cores to reduce run times; if more than one compute-intensive
application is running, system performance does not degrade. The
design process for a multi-core system is also easier; small proces-
sor cores can be replicated, and arbitrarily large amounts of silicon
area can be utilized. With a well designed on-chip interconnection
network (for example [15, 40]), it is clearly possible to construct
a “server farm on a chip[54].” In terms of the number of floating
point operations possible per second, energy per operation, and a
variety of other metrics, parallel computing has many advantages.

The advantages have been clear for many years, however—and
many parallel systems have been constructed. Despite a great deal
of effort, almost all commercial ventures into the construction of
both small and large scale multi-processor systems have met little
success. Perhaps most dramatic was the attempt by Thinking Ma-
chines in the mid 1980’s; despite having an experienced architec-
ture team with excellent credentials, as well as computer scientists
and physicists of note, the company failed to become profitable.
While the systems were functional, and could solve specific prob-
lems with unprecedented speed, their application was so narrow
that very few systems were purchased.

The Thinking Machines systems employed thousands of com-
modity microprocessors; processors optimized for parallel com-
puting have also been developed. As an example, thousands of
Inmos Transputers were assembled into systems for parallel com-
putation[51]. A consumer-level computer utilizing the Transputer
was marketed by Atari[5]. Different configurations, numbers of
processors, message passing schemes, and network topologies have
all been explored (for example, [31, 30, 24, 6, 65]). Companies
such as Meiko[53], Kendell Square Research, MasPar, NCUBE,
Sequent, Parsytec[49], and Cray[2], have all implemented different
levels of parallelism to achieve higher performance computing-and
in each of these cases, the revenue from sales fell far short of cor-
porate needs. Academic efforts to introduce parallel architectures
have also had difficulty[62, 16].

For scientific or large server applications, parallel machines can
come remarkably close to the theoretical limits[1], and the price
and performance advantages are undeniable; to date, however, there
has been little success in harnessing this power for “general pur-
pose” computing. While parallel systems can be technologically
impressive, they form only a small portion of the marketplace com-
pared to the millions of consumer laptop and desktop machines.

Furht[22], in a 1994 paper, notes the following: ““a decade ago,
university researchers were in love with parallel computers, and
the US government amorously responded. Those were the days of
glory, but times have changed: the market for massively parallel
computers has collapsed, and many companies have gone out of
business, but the researchers are still in love with parallel comput-
ing.”

We would argue that the lack of commercial success for parallel

computing is not due to a lack of effort in hardware design.

2.2 Parallel Compilers

The difficulty faced by parallel architectures is also not simply
an artifact of poor compilers, or the lack of effort on the part of
software developers. Parallel-optimizing compilers have been in
existance for many years[41, 19, 38, 57], and there have been nu-
merous attempts to develop better mathematical frameworks. As
an example, one might consider the programming language occam,
developed in the early 1990s—carefully designed, flexible, portable,
and essentially non-existant in modern computing.

Some compilers have been specially designed for specific paral-
lel machines. The J-Machine[62, 16] supported fine-grained par-
allel programs (one might note similarities between the designs of
the J-Machine and more recent “network on chip” proposals[15]).

Over the past thirty years, FORTRAN has had many variants
which have supported parallel architectures[36, 25, 52, 28]. The
level of FORTRAN support is indicative of the demand for parallel
resources amongst the scientific community.

Functional languages have also supported parallel architecture
for decades. Compilers for Prolog[34, 50, 23], Lisp[35], and other
similar languages[9, 12, 20, 66] have been implemented.

Main-stream languages such as C, C++, and Java, also have ro-
bust support for parallel hardware[26, 27, 3, 71, 17] Versions of
Ada, which was heavily supported by federal funding, also have
support for parallel architectures[14]. New programming languages
and environments are also being developed (e.g., Chapel[11]).

Platform independent libraries such as OpenMP[55] and MPI[7]
have been developed, greatly simplifying message passing between
processors. We would note that these have been used by design au-
tomation tools developers (for example, in the feng shui placement
tool[32]). EDA researchers are certainly familiar with parallel pro-
gramming resources, and have applied them when appropriate.

2.3 Multi-Tasking

Some might argue that multi-tasking operating systems are a nat-
ural fit for multicore processors. Multi-tasking has been common-
place for years, however, with most systems working quite well
with a single CPU.

A typical consumer might have dozens of compute tasks active
at any point in time — but the vast majority of these spend a great
deal of time in idle mode. One might have a task which checks for
email or incoming instant messages; a dedicated processor would
allow these checks to happen millions of times per second, but this
is far in excess of what a user requires.

2.4 The Commercial Prospects

In the mid 1980’s, academic and industry researchers had great
confidence in the commercial prospects of parallel computing; his-
tory shows that this confidence was misplaced. From the earliest
days, parallel architectures have been successful with some scien-
tific applications, but there is little success elsewhere.

Despite this, massively parallel computing has returned as a pri-
mary target of government funding[10]. At one point, federal agen-
cies were “in love” with parallel computers[22]; it appears that the
love has blossomed again.

The resurgence is not due to any significant advance that has
made parallel resources more palatable, or easier to use. Soft-
ware development for parallel machines remains difficult, and im-
provements are becoming asymptotic[37]. We would argue that the
challenges and pitfalls encountered by the prior generation of re-
searchers and developers are likely to be encountered again. From
a theoretic perspective, a fundamental change in processor archi-

tectures was inevitable[44]; this change was delayed for as long as
possible. While parallel computing has apparently “arrived” for the
consumer market, we wish to stress that this should be viewed as a
last resort.

3. UNDERSTANDING THE ENTHUSIASM

Considering the prior commercial failures of consumer parallel
processing, the shift to multicore is being greeted with a surpris-
ing amount of enthusiasm. In some respects, the battle for the
fastest clock rate has evolved into a battle to have the most pro-
cessor cores. Four core systems are anticipated in 2007, with eight
cores (a “peak” number suggested in [4]) following shortly there-
after.

We would argue that the enthusiasm is misguided, and that the
situation has been misjudged by the community. Obviously, time
will tell if we are correct in our assertion. We would note that in
the past, a general consensus of the engineering and research com-
munity has not always been correct (e.g., fifth-generation program-
ming languages, or the dot-com investment craze).

In this section, we discuss reasons why there is enthusiasm, draw-
ing on research performed by psychologists over a number of years.
An overview of research in this area can be found in a text by Cial-
dini[13].

3.1 Decision Making Errors

Irrational or erroneous decisions can occur for a variety of rea-
sons. Some of the more common reasons, related to the problem
facing the wide-scale implementation of dual-core technology, are
described briefly below. The list is not exhaustive; rather it is in-
tended to illustrate some of the primary problems facing the inte-
grated circuit design community.

3.1.1 Mental sets

People frequently find a solution to a problem and persist in ap-
plying the solution to every new problem. Luchins[43], in a classic
experiment, asked subjects to work a series of problems. The first
four problems required the same strategy for developing a solu-
tion. The fifth problem, however, had two paths to the solution:
one that required the cumbersome but proven strategy employed
on the previous problems and one significantly simpler solution.
Subjects persisted in using the more cumbersome strategy. Addi-
tionally, when given a sixth problem for which the proven strategy
did not work, subjects continued to attempt to solve the problem
using the formerly functional strategy. The tendency to continue
with a rigid problem-solving approach rut is a common problem.
Smith[61] and Wiley[70] may explain why experts fail in problem-
solving efforts[39].

With respect to the design of microprocessors, the single core ar-
chitecture had a remarkable series of successes over several decades.
The mental set issue manifests itself in an initial reluctance to switch
toward a multicore architecture. The adoption of multicore ar-
chitecutres is a different mental set; the solution strategy has had
success in supercomputing applications, and there is now an at-
tempt to apply it to the consumer market.

3.1.2 Risky decision making

Risky decision making occurs when people make choices un-
der uncertain conditions. Gamblers, for example, frequently be-
have in ways that are inconsistent with expected value[60], and, in
fact, often engage in behaviors where the expected value is negative
(i.e., they should lose money). Research suggests that when people
make decisions that violate expected value that they are relying on
subjective utility[21], where an individual evaluates the personal

worth of the outcome. Interestingly, people quite often make poor
predictions (i.e., underestimate) about the subjective value of the
outcome[42].

With respect to design teams and researchers, it is interesting
to note the relative risks of pursuing multicore architectures. For
circuit designers tasked with increasing performance, the “success”
of a project is measured by the number of instructions per second,
but not on the eventual sales. To remain employed, the best strategy
may be to target a design that will in fact have little commercial
appeal. Similarly, researchers seeking funding have good prospects
with proposals targetting parallel computation[22, 10]. A lack of
commercial impact for the research does not seem to degrade the
chances of securing funding.

3.1.3 Ignoring base rates

People often ignore the actual rates that events occur. For exam-
ple, Weinstein[68, 69] reported that people underestimate the risks
of their own negative health-related behaviors (e.g., smoking). Ad-
ditionally, the more variables coming into play and the further in
the future the event is scheduled to occur, the more likely it is that
people will make bad predictions[47].

There are well documented cases where parallel computation has
been successful. We would argue that it is likely that the successes
are overestimated, while failures are downplayed.

3.1.4 Heuristics

People use heuristics to judging the probability that an event will
occur. There are a number of different ways people make esti-
mates, all of which are likely to result in poor decisions being made.
For example, people often base their estimates of the likelihood of
an event based on how easy it is for them to remember examples
(availability heuristic), or how closely the example matches a pro-
totypical example (representativeness heuristic).

3.1.5 Gambler’s Fallacy

People believe that the odds of a chance event increase because
the event has not recently occurred[63, 67]. In fact, even when they
are given explicit instructions about the fallacy, they will continue
to bet and invoke the gambler’s fallacy[8].

In discussions with colleagues, we have found that some believe
that parallel computing will be successful because it has not been
so previously. The repeated predictions of commercial success,
coupled with the obvious lack thereof, seem strengthened the be-
lief.

3.1.6 Overestimating the improbable

People will greatly overestimate the odds of infrequent events
that are dramatic and vivid if, for example, they receive substantial
media coverage[59].

3.1.7 Confirmation bias

We have the tendency to seek and use information that supports
our beliefs and decisions[46] and to verify our ideas more eagerly
and fail to seek or believe refuting evidence[33, 58].

3.2 Groupthink

Groupthink is a phenomena that occurs when members of a group
emphasize concurrence at the cost of critical thinking in decision
making. Janis [29] (and also Eaton, [18]) suggested that at least
some subset of the following antecedent conditions are necessary
for groupthink to occur were (a) high group cohesiveness, (b) in-
sulation of the group, (c) lack of methodical procedures for search
and appraisal, (d) directive leadership, and (e) high levels of stress

with low chances of obtaining better solutions than the ones favored
by the leadership. When groups engage in groupthink, individual
members of the group abandon critical judgment, the group begins
to censor dissenting views and the pressure to conform increases.
When the group’s view is challenged by an outsider, people en-
gaged in groupthink will tend to over-simplify things as being an
’us versus them’ situation. During groupthink, members will over-
estimate the ingroup’s unanimity and will view the outgroup as the
enemy. Additionally, groupthink promotes incomplete gathering of
information (e.g., confirmation bias)[56]. Finally decisions made
as a group typically result in polarization of the group’s views. In
fact, group discussion will strengthen the dominant view, shifting
it toward a more extreme, riskier decision[48, 64].

In particular, condition (e) seems to capture the current state of
the industry well. Design teams are under intense pressure to pro-
duce faster microprocessors; Intel had a pair of high-profile design
cancellations while AMD produced a successful multicore design.
While the circuit design and EDA communities may pride itself on
good engineering and scientific practices, the environment is ripe
for groupthink.

4. CONCLUSION

From 1965 to 2001, the semiconductor industry used a “single-
core” architectural model, in which microprocessors consumed all
available transistors. There was great consumer demand at each
step along the way, and all available processing power was easily
harnessed. Binary compatibility of processor families allowed per-
formance gains to be obvious and immediate.

From 2001 to current designs, there has been a shift to multi-
core architectures. For this approach to be successful, program-
mers will need to rewrite many applications, new software must be
developed, and many existing application programs will need to be
abandoned. The throughput of individual cores will remain static,
or perhaps even degrade—for consumers to see any benefit at all,
multiple compute-intensive applications must run simultaneously.
To sustain Moore’s law, the number of cores must also grow expo-
nentially; with each generation, it will become increasingly difficult
to find ways to utilize the available computing resources.

We would summarize the change as follows.

e The industry has elected to stop developing higher perfor-
mance single core microprocessors. Power is a primary
limiting factor, but there are a host of other good reasons
for this decision. A high volume, high price, and high profit
margin product, which has proven to be in great demand by
consumers, is being abandoned. There is little doubt that if a
single core microprocessor were able to offer 2x the perfor-
mance of current designs, consumers would readily pay far
more than 2x the price.

e As areplacement for the single core microprocessor, the in-
dustry is offering flat performance for each core, but ex-
ponentially increasing numbers of cores. This avenue has
been chosen despite the fact that similar ideas have been ex-
plored for four decades, without significant commercial suc-
cess.

e Itisassumed that consumers will adopt the new architectures
because new, but as of yet unknown applications will be
developed. Existing applications may be migrated to par-
allel implementations, despite the fact that most users are
reluctant to switch software. Simply needing to recompile
software hampered the introduction of some chips (e.g., the

DEC Alpha); yet it is assumed that a much more difficult
hurdle will be passed easily.

We anticipate that many will disagree with our assertion that con-
sumers will not adopt parallel processing. As was noted[22], many
staunchly believe in the promise of consumer parallel computing,
despite all evidence to the contrary. With a brief consideration of
the history of parallel processing, one finds the unbridled optimism
of researchers, engineering teams, and investors, juxtaposed against
stunning, relentless, commercial failure. Multicore processors are
certainly useful for high-capacity servers and supercomputers—but
this is only a small portion of the market.

The semiconductor industry now faces a difficult challenge. There
is no guarantee that multicore designs will be embraced, and good
reason to expect that they will fail commercially. A primary source
of revenue will no longer be at the leading edge of Moore’s law.
While a great deal of research focus has been on technical barriers
to device scaling, the most significant barrier may be economic.

Our objective with this paper is to spark discussion regarding the
shift towards multicore architectures. It is a simple fact that the
shift has occurred — but it is open to debate as to if this is a wise
decision.

We also wish to spur discussion, in specific terms, as to what
might constitute a “killer application” for the new generation of
processors. While it is easy to hope that such an application will
be created, the chances of this occuring are greater if it is commu-
nicated to the software community that there is an imperative need
for one.

5. REFERENCES

[1] G. M. Amdahl. Validity of the single-processor approach to achieveing large
scale computing capabilities. In Proc. AFIPS Conference, pages 483-485, 1967.

[2] E. Anderson, J. Brooks, C. Grassl, and S. Scott. Performance of the CRAY T3E
multiprocessor. In Proc. Conference on High Performance Networking and
Computing, pages 1-17, 1997.

[3] Eshrat Arjomandi, Ivan Kalas, and William O’ Farrell. Concurrency abstractions
inac++ classlibrary. In CASCON ’93: Proceedings of the 1993 conference of
the Centre for Advanced Studies on Collaborative research, pages 919-932.
IBM Press, 1993.

[4] A. Aston. BusinessWeek online article: More life for moore’s law

(http://www.businessweek.com/magazi ne/content/05_25/b3938629.htm, 2005.

Atari. The Atari transputer

(http://www.atari museum.com/computers/16bits/transputer.ntml), 1988.

[6] M.L.Bartonand G. R. Withers. Computing performance as a function of the
speed, quantity, and cost of the processors. In Proc. ACM/IEEE Conference on
Supercomputing, pages 759764, 1989.

[7]1 Ayon Basumallik and Rudolf Eigenmann. Towards automatic translation of
openmp to mpi. In ICS *05: Proceedings of the 19th annual international
conference on Supercomputing, pages 189198, New York, NY, USA, 2005.
ACM Press.

[8] D. M. Boynton. Superstitious responding and frequency matching in the

positive bias and gamber’s fallacy effects. Organizational Behavior & Human

Decision Processes, 91:119-127, 2003.

Timothy A. Budd. An apl compiler for a vector processor. ACM Trans.

Program. Lang. Syst., 6(3):297—-313, 1984.

[10] G. W. Bush. State of the union address, 2006.

[11] D. Callahan, B. L. Chamberlain, and H. P. Zima. The cascade high productivity
language. In 9th International Workshop on High-Level Parallel Progamming
Models and Supportive Environments (HIPS 2004), pages 52—60, 2004.

[12] M. Chen, Y. Choo, and J. Li. Crystal: from functional description to effi cient
parallel code. In Proceedings of the third conference on Hypercube concurrent
computers and applications, pages 417—-433, New York, NY, USA, 1988. ACM
Press.

[13] R.B. Ciadini. Influence: The Psychology of Persuasion. Quill, 1993.

[24] B. Cockerham. Parallel compilation of ada units. In TRI-Ada ’88: Proceedings
of the conference on TRI-Ada ’88, pages 147-164, New York, NY, USA, 1988.
ACM Press.

[15] W.J. Dally and B. Towles. Route packets, not wires: On-chip interconnection
networks. In Proc. Design Automation Conf, pages 684689, 2001.

[16] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, Richard
Lethin, Michael Noakes, Peter Nuth, Ellen Spertus, Deborah Wallach, D. Scott
Wills, Andrew Chang, and John Keen. Retrospective: the j-machine. In ISCA

B

[9

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27

[28]

[29]
[30]

(31

(32

(33

[34

[39]

[36]

[37]
(38

[39]

[40

[41]

(42

[43

[44]

’98: 25 years of the international symposia on Computer architecture (selected
papers), pages 54-58, New York, NY, USA, 1998. ACM Press.

Timothy E. Denehy and Chang-Hyun Jo. Parallel-c++ for the java virtual
machine. In SAC ’00: Proceedings of the 2000 ACM symposium on Applied
computing, pages 843-848, New York, NY, USA, 2000. ACM Press.

J. Eaton. Management communications: The threat of groupthink. Corporate
Communications, 6:183-192, 2001.

Clarence A. Ellis. Parallel compiling techniques. In Proceedings of the 1971
26th annual conference, pages 508-519, New York, NY, USA, 1971. ACM
Press.

Marc Feeley and James S. Miller. A parallel virtual machine for effi cient
scheme compilation. In LFP *90: Proceedings of the 1990 ACM conference on
LISP and functional programming, pages 119-130, New York, NY, USA, 1990.
ACM Press.

B. Fischhoff. Judgment and decision making. In R. J. Sternberg and E. E. Smith,
editors, The Psychology of Human Thought. Cambridge University Press, 1999.
B. Furht. Parallel computing: Glory and collapse. IEEE Computer,
27(11):74-75, 1994.

Gopal Gupta, Enrico Pontelli, Khayri A.M. Ali, Mats Carlsson, and Manuel V.
Hermenegildo. Parallel execution of prolog programs: a survey. ACM Trans.
Program. Lang. Syst., 23(4):472—602, 2001.

J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(3):532-533, 1988.

M. D. Guzzi, J. P. Hoefinger, D. A. Padua, and D. H. Lawrie. Cedar fortran and
other vector and parallel fortran dialects. In Supercomputing ’88: Proceedings
of the 1988 ACM/IEEE conference on Supercomputing, pages 114-121, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

Philip J. Hatcher, Anthony J. Lapadula, Robert R. Jones, Michael J. Quinn, and
Ray J. Anderson. A production-quality c* compiler for hypercube
multicomputers. In PPOPP ’91: Proceedings of the third ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 73-82,
New York, NY, USA, 1991. ACM Press.

Philip J. Hatcher, Michael J. Quinn, Ray J. Anderson, Anthony J. Lapadula,
Bradley K. Seevers, and Andrew F. Bennett. Architecture-independent scientifi ¢
programming in data parallel c: three case studies. In Supercomputing *91:
Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages
208-217, New York, NY, USA, 1991. ACM Press.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluation of
compiler optimizations for fortran d on mimd distributed memory machines. In
ICS 92: Proceedings of the 6th international conference on Supercomputing,
pages 1-14, New York, NY, USA, 1992. ACM Press.

I. L. Janis. Victims of Groupthink. Houghton Miffin, 1972.

A. K. Jones and P. Schwarz. Experience using multiprocessor systems— a status
report. Computing Surveys, 12(2):121-165, 1980.

P. H. Enslow Jr. Multiprocessor organization — a survey. Computing Surveys,
9(1):103-129, 1977.

F. Khundakjie, N. B. Abu-Ghazaleh, M. C. Yildiz, and P. H. Madden. Parallel
VLS standard cell placement on a cluster of workstations. In Proc. IEEE
Clusters, pages 529-553, 2001.

J. Klayman and Y.-W. Ha. Confi rmation, disconfi rmation, and information in
hypothesis testing. Psychological Review, 94:211-228, 1987.

Alexis Koster. Compiling prolog programs for parallel execution on a cellular
machine. In ACM 84: Proceedings of the 1984 annual conference of the ACM
on The fifth generation challenge, pages 167-178, New York, NY, USA, 1984.
ACM Press.

D. A. Kranz, Jr. R. H. Halstead, and E. Mohr. Mul-t: a high-performance
parallel lisp. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference
on Programming language design and implementation, pages 81-90, New
York, NY, USA, 1989. ACM Press.

Howard E. Krohn. A parallel approach to code generation for fortran like
compilers. In Proceedings of the conference on Programming languages and
compilers for parallel and vector machines, pages 146-152, 1975.

Diogenes L afong. Private communication, 2006.

Leslie Lamport. On programming parallel computers. In Proceedings of the
conference on Programming languages and compilers for parallel and vector
machines, pages 25-33, 1975.

J. P. Leighton and R. J. Sternberg. Reasoning and problem solving. InA. F.
Healy and R. W. Proctor, editors, Handbook of Psychology, Vol. 4:
Experimental Psychology. Wiley, 2003.

T.Linand L. T. Pileggi. Throughput-driven |C communication fabric synthesis.
In Proc. Int. Conf. on Computer Aided Design, pages 274-279, 2002.

Neil Lincoln. Parallel programming techniques for compilers. SIGPLAN Not.,
5(10):18-31, 1970.

G. Loewenstein and D. Schkade. Wouldn't it be nice? predicting future
feelings. In D. Kahneman, E. Diener, and N. Schwartz, editors, Well-Being: The
Foundations of Hedonic Psychology. Sage, 1999.

A. S. Luchins. Mechanization in problem solving. Psychological Monographs,
54(248), 1942.

P. H. Madden. Supersized VLSI: A receipe for disaster. In Electronic Design

[49]
[46]

(47

(48]

[49]

[50]

[51]

[52]

[53]

(54

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64

[65]

[66]

[67]

(e8]
[69]
[0

(71

Processes, 2005.

G. E. Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 38(8):114-117, April 1965.

R. S. Nickerson. Confi rmation bias: A ubiquitous phenomenon in many guises.
Review of General Psychology, 2:175-220, 1998.

R. A. Olsen. Desirability bias among professional investment managers. Some
evidence from experts. Journal of Behavioral Decision Making, 10:65-72,
1997.

D. G. Pruitt. Choice shiftsin group discussion: An introductory review. Journal
of Personality and Social Psychology, 20:339-360, 1971.

G. Ramanathan and J. Oren. Survey of commercial parallel machines. ACM
SIGARCH Computer Architecture News, 21(3):13-33, 1993.

B. Ramkumar and L. V. Kale. A chare kernel implementation of a parallel
prolog compiler. In PPOPP *90: Proceedings of the second ACM SIGPLAN
symposium on Principles & practice of parallel programming, pages
99-108, New York, NY, USA, 1990. ACM Press.

F. Roch-Siebert and G. Villard. PAC: First experiements on a 128 transputers
meganode. In Proc. International Symposium on Symbolic and Algebraic
Computation, pages 343-351, 1991.

Roland Rohl and Marco Annaratone. Parallelization of fortran code on
distributed-memory parallel processors. In ICS "90: Proceedings of the 4th
international conference on Supercomputing, pages 342—-353, New York, NY,
USA, 1990. ACM Press.

D. Roweth. The Meiko CS-2 system architecture. In Proc. ACM Symp. on
Parallel Algorithms and Architectures, page 213, 1993.

M. Santarini. EE Timesarticle: Cal Berkeley dean predicts
server-farm-on-a-chip

(http://www.eedesign.com/article/showarticle.jhtmi ?articleid=51000480, 2004.
Mitsuhisa Sato. Openmp: parallel programming api for shared memory
multiprocessors and on-chip multiprocessors. In 1SSS *02: Proceedings of the
15th international symposium on System Synthesis, pages 109-111, New York,
NY, USA, 2002. ACM Press.

S. Schulz-Hardt, D. Frey, C. Luthgens, and S. Moscovici. Biased information
search in group decision making. Journal of Personality and Social Psychology,
pages 655-669, 2000.

David B. Skillicorn and Domenico Talia Models and languages for parallel
computation. ACM Comput. Surv., 30(2):123-169, 1998.

R. B. Skov and S. J. Sherman. Information-gathering processes: Diagnosticity,
hypothesis-confi rmation strategies, and perceived hypothesis confi rmation.
Journal of Experimental Social Psychology, 22:93-121, 1986.

P. Slovic, B. Fischhoff, and S. Lichtenstein. Facts versus fears: Understanding
perceived risk. In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment
Under Uncertainty: Heuristics and Biases. Cambridge University Press, 1982.
P. Slovic, S. Lichtenstein, and B. Fischhoff. Decision making. InR. C.
Atkinson, R. J. Herrnstein, G. Lindzey, and R. D. Luce, editors, Stevens’
Handbook of Experimental Psychology (Vol. 2). Wiley, 1998.

S. M. Smith. Getting into and out of mental ruts: A theory of fi xation,
incubation and insight. In R. J. Sternberg and J. E. Davidson, editors, The
Nature of Insight, pages 229-251. MIT Press, 1995.

Ellen Spertus, Seth Copen Goldstein, Klaus Erik Schauser, Thorsten von
Eicken, David E. Culler, and William J. Dally. Evaluation of mechanisms for

fi ne-grained parallel programs in the j-machine and the cm-5. In ISCA "93:
Proceedings of the 20th annual international symposium on Computer
architecture, pages 302—-313, New York, NY, USA, 1993. ACM Press.

K. E. Stanovich. The fundamental computational biases of human cognition:
Heuristics that (sometimes) impair decision making and problem solving. In

J. E. Davidson and R. J. Sternberg, editors, The Psychology of Problem Solving.
Cambridge University Press, 2003.

R. S. Tindale, T. Kameda, and V. B. Hinsz. Group decision making. In M. A.
Hogg and J. Cooper, editors, The Sage Handbook of Social Psychology. Sage,
2003.

P. T. Tosic. A perspective on the future of massively parallel computing:
Fine-grain vs. coarse-grain parallel models, comparison and contrast. In Proc.
Conference on Computing Frontiers, pages 488-502, 2004.

P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and distributed haskells.
J. Funct. Program., 12(5):469-510, 2002.

A. Tversky and D. Kahneman. Judgment under uncertainty: Heuristics and
biases. In D. Kahenman, P. Slovic, and A. Tversky, editors, Judgment Under
Uncertainty: Heuristics and Biases. Cambridge University Press, 1982.

N. D. Weinstein. Why it won’t happen to me: Perceptions of risk factors and
susceptibility. Health Psychology, 3:431-458, 1984.

N. D. Weinstein and W. M. Klein. Resistance of personal risk perceptions to
debiasing interventions. Health Psychology, 14:132—140, 1995.

J. Wiley. Expertise as mental set: the effects of domain knowledge in creative
problem solving. Memory and Cognition, 26:716—730, 1998.

Yingchun Zhu and Laurie J. Hendren. Communication optimizations for
parallel ¢ programs. In PLDI *98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and implementation, pages
199-211, New York, NY, USA, 1998. ACM Press.

