
A Data-Path Oriented, IP-Based Framework
for Flexible Design Exploration

C. Bolchini, C. Brandolese, W. Fornaciari, L. Frigerio, F. Salice
Politecnico di Milano – Milano, Italy

ABSTRACT
This paper presents a preliminary proposal for a design flow
aimed at simplifying and improving the quality of the imple-
mentation of custom digital systems. The flow is based on a
set of highly parametric VHDL core generators designed to
enforce code readability and technology independence. The
focus is on those portions of a design that are not usually
covered by standard IP cores—buses, memories, etc.—and
the related flow mainly targets digital signal processing or
networking applications. A simple design example and the
corresponding results are also presented and commented to
better clarify the methodology.

1. INTRODUCTION
Designing with HDLs has been common practice for 15

years and has led to the development of efficient and reli-
able design flows and tools. With the increasing complexity
of designs two major techniques have arose as valuable com-
plement to classical design flow: high level synthesis and
IP-based design. The former basically introduces a further,
more abstract level of abstraction and the latter tends to
change the level of granularity at which a design, or a por-
tion of it, is described.

It is worth noting that while high-level synthesis has been
studied for quite a long time and has not significantly helped
in filling the productivity gap, the use of IPs (such as GPP or
DSP cores, memories, USB or PCI buses and other complex
cores) seems to be a more promising solution. Nevertheless,
integration of complex blocks increases the complexity of
system verification and does not completely solve the prob-
lem of customization.

The latter issue is particularly critical since standard blocks
often cover only a subset of the user needs and in most
cases are specifically designed for a particular target technol-
ogy. Mostly due to commercial reasons, IP developers and
vendors have concentrated their effort in developing cores
whose functionality is clearly defined by either some stan-
dard (buses, protocols, encryption/decryption, etc.) or by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

very high-level mathematical formulations (FFT, DCT, fil-
ters, etc.).

This approach creates a gap between the very specific
user application’s needs and the available building blocks.
In fact, whenever commercial IPs’ functionality is too far
from the user’s requirements, designers tends to re-design
the component from scratch since the customization of ex-
isting IPs requires long time spent in understanding their
structure, in implementing the desired modifications and in
verifying the new functionality. It is worth noting that in
several cases the HDL source code of the IP is not even
disclosed and thus is not modifiable at all. In such cases ad-
hoc wrappers need to be developed to integrate the cores.
Figure 1 shows the usual scenarios: in (a) the integration ap-
proach strongly relies on standardization and the involved
IPs can be considered homogeneous; in (b) heterogeneous
open-source IPs are integrated with designer’s intervention
on the core’s source code; and, finally, in (c) heterogeneous
black-box cores are integrated resorting to the implementa-
tion of wrappers.

IPIPIP

interconnect interconnect

modified
IP

modified
IP

interconnect

IP

wrapper

IP

wrapper

(a) (b) (c)

Figure 1: IPs integration approaches

According to these premises, the current IP-based method-
ology implicitly partitions designs into two clearly distin-
guished portions: a well defined set of very high-level stan-
dard blocks on one side and a portion of “sparse” logic im-
plementing the custom functionality which constitutes the
real added-value of the design, on the other side. The cus-
tom portion of the system is thus still designed according
to a classical HDL-based flow and no integrated and flexible
support is given to the design team.

The work presented in this paper outlines a preliminary
proposal for an intermediate-level block-based design flow
aimed at filling the gap discussed above. In the following, a
brief summary of commercial solutions that partly face the
outlined problem, also clarifying how this paper differs from
the readily available approaches, is presented.

One of the key factors for the success of the IP-based de-
sign paradigm is that cores should be highly parametric and
configurable. In-house development of parametric cores re-



quires more time, effort and expertise than the design of
ad-hoc solutions, and for this reason—though enforcing in-
ternal reuse—it is rarely adopted. On the other hand, using
commercial off-the-shelf IPs allows great flexibility but does
not permit customization. IP reuse is a well-established so-
lution in the EDA market, the most notable example being
probably Synopsys DesignWare [5], a rich set of libraries
that, combined with an efficient and flexible inferentiation
mechanism, allows the development of rather complex sys-
tems with reasonable design effort.

A similar approach has also been followed by most of
the FPGA vendors (Xilinx [6] and Altera [7] prominently):
their design-entry, synthesis and back-end flows are prof-
itably complemented by core generators for the most com-
mon functions, ranging from simple arithmetic components
to complex memory and storage structures. The integra-
tion of various IPs, coming from different IP providers has
been an active research field. Several solutions have been
proposed, ranging from standard definitions of interfaces
and buses (e.g. VSIA [12], IBM CoreConnect [9], ARM
AMBA [10]) to techniques for wrappers generation (e.g. the
TANGRAM [11] approach).

A further extension and improvement to such design flows
and tools has been realized (Xilinx EDK, Altera Quartus
and others) to cope with the complexity of FPGA-based
SoCs such as Xilinx Virtex-II Pro or Altera Excalibur fami-
lies. In these scenarios the overall architecture of the target
platform is almost completely predefined (buses, component
wrapping, component interfacing, etc.) and their nature is
more suitable for system-level design rather than for cus-
tom logic development. It is worth noting that the major
difference between such approaches and the one proposed in
this paper is the strong link these design tools have with the
target technology.

A more technology independent and very interesting com-
mercial proposal is the Synplify toolchain [8] based on a
Simulink design entry complemented by a custom (DSP)
blockset, an architectural-level optimization engine (Syn-
plify DSP), a set of code generators associated with the
blockset and a classical RT synthesis flow (Synplify Pro).
Though really valuable, this approach concentrates more on
the analysis of the performance of a given implementation—
the Simulink model—of a DSP problem, posing its focus on
very high-level properties such as numerical convergence,
quantization, parallelization and so on. In our opinion, this
methodology operates with too coarse a grain to cope with
the design challenges addressed by the approach proposed
in this paper.

2. METHODOLOGY OVERVIEW
Core-based design is a promising way to deal with the

increasing system design complexity. Exploiting the avail-
ability of pre-verified cores can greatly speed-up the design,
as only an integration step need to be performed. However,
this mechanism often leads to limited flexibility, especially
if IPs are purchased from third-party vendors, because no
visibility of the internal structure is usually allowed, and
therefore no internal modifications are possible. IPs are not
usually provided with the source code and therefore they
can only be integrated as black boxes.

Internal development of IPs is also possible, and can guar-
antee a greater flexibility and control, even if an extra effort
has to be planned. Furthermore, a framework for IPs devel-

cachecores

constraints exploration

design entry

VHDLRT simulation

traditional
RT flow

Figure 2: The proposed design methodology

opment should be used. To develop a flexible and paramet-
ric core, the HDL features (for example the VHDL generics
and generate statements, functions, etc.) are not always
sufficient and often lead to poor code readability.

The proposed methodology aims at providing a design
framework to exploit both the advantages of IP-based de-
sign and design for reuse. The design of a complex data
path can be performed with the integration of already pre-
verified blocks that can also be accessed and modified by
the designer. The development of blocks, both designed
from scratch and defined starting from other cores is pos-
sible. Finally, the exploration of the solution space is also
possible and a final VHDL model is then produced.

Figure 2 shows a representation of the proposed flow. The
entry point is a high-level schematic that allows the designer
to define and connect the blocks composing the system. Af-
ter that, constraints can be set and an exploration phase
is performed to determine the most suitable configurations.
A VHDL model is available for every chosen configuration
and can then be simulated. In principle, it could be possi-
ble and even advisable, to evaluate and simulate more than
one design. Finally, after defining all the necessary details
of the target technology, synthesis and back-end phases are
performed according to traditional flows.

The framework is based on the RoadRunner (RR) toolset,
composed by the following elements:

RRCore – a collection of parametric core generators;

RRCache – a database storing core characterization (e.g.,
area, critical path delay, latency, . . . ) integrated with
a neural network based estimation engine used to ex-
trapolate figures for uncharacterized modules.

Details of each phase composing the design flow are de-
scribed in the following paragraphs.

2.1 System definition
System definition is realized through a high-level schematic

entry, exploiting a collection of pre-verified, technology in-
dependent cores available in the RRCore. Each core is para-
metric and exposes several parameters. The designer must
set all those parameters that will not be involved in the
exploration phase while leaving unassigned all those param-
eters defining aspects of the modules that will be tuned dur-
ing exploration. It is worth noting that some parameters are
automatically inherited by cascaded modules. For example,
the setting of the output width of a module chained with
another one, causes the latter to have the input width fixed,
and therefore the parameter “width” is defined at top level



and can be propagated when the modules are connected to
each other. Not only the available cores can be used to define
a system, but it is likely that some portions of the design will
need to be customized. The designer has different strategies
to define the parts that should be not generated through
RRCore. First of all, as the VHDL code of the library cores
is available and human-readable, every modification can be
performed both in a parametric way (by modifying the gen-
erator) and in a fixed way (by editing the generated VHDL
code).

The library can be updated not only by modifying ex-
isting cores, but also by adding new blocks either defined
from scratch or combining existing cores into a more com-
plex module. The proposed methodology gives the necessary
support to perform this step, through a set of support C++
classes that helps the generators’ development.

Finally, if some components are specific for the application
under development and are not expected to be reused in
other designs, or if the development of a parametric core
requires too much effort, the designer can integrate VHDL
code directly in the system.

The schematic entry allows to graphically identify the
topology of the system, to define how ports are connected
and how modules work together. At the end of the design
phase, a model of the system is available. This model is not
completely defined as some parameters are left unspecified
for the exploration phase. In other words, the functionality
is fully specified while the definition of the architecture of
individual cores is delayed to a later design phase.

2.2 Constraints Setting
After the design phase is completed the designer usually

may want to define some constraints in order to guide the
exploration phase. Different types of constraints are avail-
able according to the information stored in the RRCache
for each module, area and delay constraints being the most
common. Each module of the library usually has different
architectures, each one suited to satisfy specific constraints.
For example, a CORDIC module might be realized through
an iterative solution, suitable if area occupation has to be
minimized, but less performing with respect to execution
time. Alternatively, a pipelined solution requires more area
but is usually faster. The designer can impose constraints
both on single modules, and on the top level design, thus
guiding the exploration phase with the desired degree of de-
tail.

2.3 Space Analysis
During design space analysis, different solutions for the

design are analyzed and compared to meet the user con-
straints and the most suitable solutions are proposed. The
designer has the possibility to change the parameters in or-
der to modify the proposed solutions. Modification of the
parameters at top level leads to changes in all of the mod-
ules that are sensible to these parameters. In this way, for
example, the bit-width of certain signals can easily be modi-
fied and propagated to the involved modules. The RRCache
database, where cost figures of the modules are stored, is
used to support choices during exploration. Whenever the
required data are missing, the estimation engine is run and
an estimate is generated.

2.4 Simulation, Synthesis and back-end

TOP

A

B

C1 C2
A_GEN

TOP_GEN

B_GEN

C_GEN

Figure 3: Modules and generators hierarchy

The simulation is performed to verify adherence of the
system to the functional requirements. To perform this step
an external simulation engine is used (e.g., Mentor Graphics
Modelsim). If the solution is not correct or does not meet
some constraints, another iteration needs to be carried out.

Finally, synthesis and back-end are performed with com-
mercial tools according to traditional FPGA or ASIC flows.

3. PARAMETRIC CORES
In this section, the features of generic IP cores constituting

the base of the methodology are detailed by outlining their
structure and parameters and by describing the fundamental
ideas behind the exploration phase.

3.1 Atoms and Molecules
Modules in the RoadRunner library can be classified ac-

cording to their internal hierarchy. Very simple modules
exist whose internal structure need not to be split over two
or more levels of hierarchy. Such modules correspond to a
purely RT VHDL description requiring no components at
all. We will call such modules Atomic IPs or, for short,
atoms. As all the modules of the RoadRunner library, the
structure and functionality of atoms may depend on a cer-
tain number of parameters.

The structure of the RoadRunner library allows easy in-
tegration of already designed modules into more complex
cores, with no limits, in principle, to this nesting mecha-
nism. We will refer to composite hierarchical modules as
Molecular IPs or molecules. It is worth noting that since
modules are always generated, hierarchy is obtained by com-
bining the generators and not the modules themselves. This
situation is depicted graphically in Figure 3, where the left
diagram shows the hardware (VHDL) hierarchy of a mole-
cule and the right side shows the structure of the generator
with emphasis on the calls to external generators for each
submodule.

Similarly to atoms, molecules also are characterized by pa-
rameters, but molecules have an additional property: opac-
ity. The degree of opacity of a molecule changes the way
its structure is visible from the outside. A perfectly trans-
parent molecule exposes all its constituents (atoms or other
molecules) at all levels of hierarchy. The exposing of the
hierarchy means that the parameters of each submodule are
inherited by the top-level module and can be tuned by the
exploration mechanism. At the opposite side of the spec-
trum there are perfectly opaque molecules, i.e., modules ex-
posing only those parameters inherently pertaining to the
top-level architecture. With respect to parameters, a per-
fectly opaque molecule is identical to an atom. In between
these two limiting cases there are partially opaque molecu-
les, i.e., molecules exposing the parameters of submodules
down to a given level of hierarchy.

As an example, let us consider an FIR filter: it is built



with multipliers and adders at the first level of hierarchy
and, in turn, multipliers are built with adders at a second
level of hierarchy. Tuning the opacity of such a molecule
means exposing the parameters of submodules at the differ-
ent levels, as summarized below:

opaque – number of taps, filter weights, word width, active
clock edge, active reset level;

semitransparent – all previous parameters plus the ar-
chitecture of the multipliers (e.g., Wallace or Dadda)
and architecture of the adders used in the taps (e.g.,
ripple-carry or carry look-ahead);

transparent – all previous parameters plus the architec-
ture of the adders used to build multipliers.

It is worth noting that the opacity is itself a parameter of
a molecule but has the peculiarity of modifying the “inter-
face” of the corresponding generator. This issue is further
discussed in Section 3.3.

3.2 Parameters
Both atoms and molecules are characterized by a set of

parameters that make them flexible and customizable. Mu-
tuating the terms from object oriented programming, it can
be said that an atom or a molecule, i.e., its corresponding
generator, is a class while an instance of an atom or a mole-
cule is an object. According to this definition the difference
between a class and an object is that in the latter all pa-
rameters have been assigned a specific value.

When structuring the architecture of a circuit, the de-
signer must instantiate atoms and molecules, must connect
them and must assign values to their parameters. If all
parameters of all modules are fixed, no design space explo-
ration is possible and the design is complete. On the other
hand, the designer usually makes some choices at design-
time and leaves other parameters unassigned for automatic
optimization.

To clarify the exploration process and, namely, to define
the design space the following definitions are necessary.

Definition 1. A parameter can be either explorable or
non-explorable. Explorable parameters can (but not neces-
sarily must) be left unassigned in the design phase and au-
tomatically determined during exploration in such a way to
optimize a predefined figure of merit. Non-explorable pa-
rameters must be assigned at design time. Furthermore, ex-
plorable parameters may only have a finite (usually small)
number of different values.

For example explorable parameters are the internal preci-
sion of a floating-point adder, the bit-width of a multiplier or
the architecture of an adder (chosen between a set of prede-
fined alternatives) while non-explorable parameters are the
coefficients of a FIR filter, the active front of a clock signal
or the number of inputs of a multiplexer.

Definition 2. The value of a parameter can be either
fixed or variable. A fixed value is assigned explicitly by the
designer while a variable parameter is left free for explo-
ration.

An additional definition is necessary to completely define
the concept of value in this context.

PARAMETER
explorable non-explorable

V
A

L
U

E fixed
module × ×

top-level × ×

variable
module ×

top-level ×

Table 1: Parameters and values properties

Definition 3. A value can be defined at module level or
at top-level. It is defined at module level when its value is
assigned explicitly to the corresponding parameter, whereas
it is defined at top-level when it is assigned indirectly through
the definition of a new system-wide explorable parameter.

While Definitions 1 and 2 are rather straightforward, Def-
inition 3 deserves more attention and its meaning is better
clarified by the following example. In a synchronous de-
sign it is reasonable that the reset signal of all bistables is
active on the same level (high or low): this suggests the def-
inition of a new, top-level parameter indicating the active
reset level and to associate this parameter with the value of
all submodule’s reset active level. The reset active level of
a module is in this case a fixed, top-level value associated
with a non-explorable parameter. Similarly, the number of
pipeline stages of two modules connected in parallel should
reasonably be the same but the designer might want to in-
vestigate different choices. To do this, the designer defines
a top-level parameter indicating the number of stages and
assigns it as the value of the parameters of the two modules.
Such a new parameter is explorable and has a variable, top-
level value.

The relations between parameters and values properties
and all allowed combinations are summarized in Table 1.

The opacity of a module is currently defined as non-explo-
rable, since the preliminary optimization algorithm used for
design space exploration cannot treat it conveniently. Never-
theless there is no theoretical reason to allow this parameter
to be explorable. As a rule of thumb, it can be stated that
making a molecule opaque limits the design space reduc-
ing the optimization run-times but may lead to unsatisfac-
tory results while making the molecule perfectly transparent
greatly widens the design space and allows finer tuning of
the overall architecture, opening new optimization opportu-
nities.

3.3 Exploration
A complete design is composed of modules (atoms or mo-

lecules) and a number of module-level and top-level param-
eters. Some of the parameters are non-explorable or fixed,
while others are explorable and variable. The set of the lat-
ter defines the dimensionality of the design space. Since,
according to Definition 1, explorable parameters can only
range over a finite set of values, the design space is guaran-
teed to be finite.

The process of design space exploration is basically an effi-
cient analysis of all possible assignments of values to param-
eters under a given set of constraints. Typical constraints
are expressed as maximum clock period, maximum combina-
torial delay, maximum average power dissipation or, mostly
for FPGAs, maximum area. To determine constraint viola-
tion and to assign an overall assessment of a tentative solu-
tion the exploration relies on area, timing and power figures



Figure 4: System functionality

either stored in a database or interpolated from a set of
available values in the database. This evaluation, of course,
requires that modules are pre-characterized and it can be
regarded as a limitation of the proposed approach. For this
reason the database is accessed through an intelligent tool,
the RRCache, that, each time a module (atom or molecule)
is actually used with a new set of parameters for a design,
stores the relevant figures into the database and simulta-
neously re-trains a predictor based on a neural paradigm.
This strategy does not eliminate the drawbacks related to
pre-characterization but significantly improves the usability
of the proposed approach.

4. EXPERIMENTAL RESULTS
To clarify the proposed methodology, let us consider the

realization of a simple data-path, computing the function
f(A, B, K) = sin(A + B) · 2K . As entry point, the designer
defines the system functionality through a schematic and
fixes the system topology as in Figure 4.

The design is composed of three functional blocks: an
adder, a block for the computation of the sine function and
a shifter to multiply the result by 2K . Three input values
are defined (A, B, K), and their bit-widths are considered
as system parameters. Widths of input values influence the
dimension of the internal signals and of the output signal.
Let top::n be the width of A and B and top::m the width
of K; this implies that the width of the adder output and the
sine output are top::n+1 (the same precision is maintained),
while the width of the final output is top::n+1+2

top::m. The
prefix top:: indicates that these values are not fixed for
individual modules but are rather defined at top level.

Every block can be implemented in different ways accord-
ing to the available architectures in RRCore. The block per-
forming the sum can be implemented using either a carry
look-ahead adder or a ripple-carry adder; to perform the
sine computation a LUT-based or a CORDIC module, ei-
ther pipelined or iterative, can be used; finally, the shifter
can be realized with an arithmetic or a logarithmic architec-
ture.

Tables 2 and 3 show the values saved in RRCache for
area and timing optimization for the available modules with
top::n=8 and top::m=3. Two technologies are shown: LSI
Logic LSI 10k at 0.5µm and Virtex-II Pro Xilinx FPGA
fg456, speed grade -7.

The design space analysis is performed through a simple
exploration algorithm, that takes as input the area and time
figures of each module (as shown in Tables 2 and 3) and pos-
sibly other characteristics available in RRCache. In particu-
lar, adders, shifters and LUT-based sine calculation module
are combinatorial, therefore they are fully characterized by
the delay of the critical path, while CORDIC is a sequential
module, and therefore information about throughput and

LSI 10k (mils) Virtex-II Pro(LUT)
Optimization for Optimization for
Area Time Area Time

Adder-cla 81 273 9 9
Adder-rc 80 443 9 9
Cordic-it 1565 1632 107 116
Cordic-pl 6992 7146 179 184
LUT-sine 732 2020 119 119
Shifter-arith 143 376 27 27
Shifter-log 131 265 27 27

Table 2: Synthesis results for area occupation

LSI 10k (ns) Virtex-II Pro (ns)
Optimization for Optimization for
Area Time Area Time

Adder-cla 11.75 4.62 9.87 9.87
Adder-rc 14.71 4.89 9.87 9.87
Cordic-it 3.30 1.81 6.62 5.78
Cordic-pl 2.72 0.97 3.30 3.22
LUT-sine 11.82 5.11 6.74 6.74
Shifter-arith 7.08 2.51 6.36 6.36
Shifter-log 6.55 2.29 6.36 6.36

Table 3: Synthesis results for path delay

latency are necessary for its complete characterization. The
iterative architecture of CORDIC requires 9 clock cycles to
compute the output data (one clock cycle per input bit),
while the pipelined architecture provides a result at every
clock cycle, after an initial latency of 9 cycles.

The design has been evaluated for three different types
of constraints: area optimization, time optimization and
area/timing tradeoff.

Area optimization – If area optimization is required, and
no—or very loose—timing constraints are specified,
the smallest blocks are chosen for each functionality.
In this case the proposed solution is dependent on the
chosen technology: a ripple-carry adder, a logarith-
mic shifter, and an iterative CORDIC are chosen if
the target technology is an FPGA, while if the deign
is targeted to ASIC, a LUT is preferred for the sine
computation. Results are shown in table 4.

Module FPGA Tech. Asic Tech.
Adder Adder-RC Adder-RC
Sine Comp. Cordic-it LUT
Shifter Shifter-log Shifter-log

Table 4: Solution for area optimization

Area/timing tradeoff – The previous solution can be mod-
ified adding a time constraint to the sine module. In
this case a tradeoff between area and timing is re-
quired, and therefore for the FPGA technology also
the LUT turns out to be preferred to CORDIC, as
shown in Table 5.

Module FPGA and Asic Tech.
Adder Adder-RC
Sine Comp. LUT
Shifter Shifter-log

Table 5: Solution for area/timing tradeoff



Timing optimization – If timing optimization is required,
and no area constraints are specified, the fastest blocks
are selected for each functionality. Solutions vary ac-
cording to the nature of the time constraint. If maxi-
mum throughput is required the solution is composed
of a carry-look-ahead adder, a pipelined CORDIC for
the sine computation and a logarithmic shifter, while
if minimum delay is the goal, then a full combinatorial
solution is proposed, therefore the pipelined CORDIC
is replaced by a LUT, as shown in Table 6.

Module Max throughput Min delay
Adder Adder-CLA Adder-CLA
Sine Comp. Cordic-pl LUT
Shifter Shifter-log Shifter-log

Table 6: Solution for time optimization

It is worth noting that, in all cases, the designer can easily
evaluate the results for different values of input widths by
simply changing the value of such parameters in the top
module.

5. CONCLUSIONS
This paper presented the fundamental ideas of a new method-

ology for the design of complex data-paths. In the authors’
opinion the major novelties proposed by this work are:

1. A rich library of module (VHDL code) generators rang-
ing in complexity from very simple ones (e.g., adders,
shifters, muxes, . . . ) to rather complex ones (e.g.,
FFT, DCT, CORDIC, . . . );

2. Modules are highly parametric and are designed in
such a way that almost only the functionality needs
to be specified allowing thus to exploiting all archi-
tectural details as degrees of freedom for a subsequent
design space exploration;

3. The generated VHDL code is very clear and nicely
formatted to improve readability both for self docu-
mentation purposes and for a better maintainability
and/or customizability;

4. The exploration algorithm (currently a rather generic
one) strongly relies on figures either derived from pre-
characterization of the modules (stored into a growable
database) or from a neural network based, adaptive
estimation engine.

The example presented, yet very simple, has shown the ap-
plication of the methodology to a data-path involving com-
binatorial, pipelined and iterative modules and has demon-
strated the key ideas behind this proposal.

The current design flow relies on very prototypical imple-
mentations of the two modules RRCore and RRCache. The
RRCore library contains more than 60 parametric modules,
tested and pre-characterized for the two technologies men-
tioned in the paper. Although the implementation is prelim-
inary, most of the methodological and formal aspects have
already been defined and thus most of the future effort will
be directed to implement new generators and to improve the
two RoadRunner components.

6. REFERENCES
[1] C. Barna, W. Rosenstiel, “Object-Oriented Reuse Methodol-

ogy for VHDL,” Proceeedings of IEEE Design, Automation
and Test in Europe, DATE’99, Munich, Germany, March
1999.

[2] P. Schaumont et al., “Hardware Reuse at the Behavioral
Level,” Proceedings IEEE/ACM Design Automation Con-
ference, DAC’99, New Orleans, USA, June 1999.

[3] D.D. Gajski et al., “Essential issues for IP reuse,” Proceed-
ings of ASP-DAC’2000 pp. 37–42, 2000.

[4] M. Vaupel, T. Grotker, H. Meyr, “Combox: library-based
generation of VHDL modules,” Proceedings of the IX Work-
shop on VLSI Signal Processing, pp. 293–302, 1996.

[5] http://www.synopsys.com/products/designware/

[6] http://www.xilinx.com/

[7] http://www.altera.com/

[8] http://www.synplicity.com/
[9] “IBM CoreConnect Bus Architecture,” http://www-3.ibm.-

com/chips/ products/coreconnect/index.html

[10] “ARM AMBA,” http://www.arm.com/

[11] U.R.F. Souza, J.K. Sperb, B.A. Mello, F.R. Wagner, “Tan-
gram Virtual Integration of HeterogeneousIP Components
in a Distributed Co-Simulation Environment,” Proceedings
of the 16th Symposium on IntegratedCircuits and Systems
Design, SBCCI’03, Sao Paulo, Brazil, September 2003.

[12] “Virtual Socket Interface Alliance,” http://www.vsi.org


