Politecnico di Milano

A data-path oriented, IP-Based

Framework for Flexible Design
Exploration

Speaker: Laura Frigerio
LFrigerio@Elet.polimi.it

C. Bolchini, C. Brandolese, W. Fornaciari, F. Salice

The paper aims at proposing a new design flow, based
on VHDL code generators, allowing both
a fast design of parametric specifications and
a fast redesign in order to respect tight constraints
Key aspects:
Code readability
Technology independence
Parametric specification in term of both size and architectural
aspects
The activity focuses on portions of the design do not
usually covered by standard (and complex) IP cores

Introduction

Development of digital designs:

HDL has been the common practice for 15 years but productivity
gap enforce the development of more efficient techniques
High Level Synthesis raises the abstraction level but is not
completely satisfactory
IP-Based Design is a more promising solution but with some
drawbacks
Implemented functionality are usually standards or complex blocks
Subset of user needs
HDL source is not even disclosed
hard modifications

() () () [mogiied) [modified)

P IP
wrapper wrapper
Y Y v Y Y | A
| interconnect | interconnect | | interconneet

IP flows paradigms

The current IP-based methodology partitions the design
in two portions: standard blocks and sparse logic
This work is a preliminary proposal for an intermediate-
level block-based design flow aimed at filling the gap
between the two portions
Core-based design:

Pre-verified cores are integrated in the design

+ Only the integration has to be performed

- Insufficient flexibility
Design for reuse

Internal development of cores is performed

+ Great flexibility

- More development effort

Proposed flow

The proposed flow

= designentry = { cores) (cache |
L = J - P i
Y
Y
constraints ‘ \‘ exploration

[RT simulation "‘ (" vHDL

Y
traditional
RT flow

The framework is based on the RoadRunner toolset
composed by:
RRCore: collection of parametric core generators

RRCache: database storing core characterization integrated with
an estimation engine for uncharacterized modules. 5

Proposed flow

System definition
High Level Schematic Entry exploits cores available in the
RRCore; the schematic entry allows to identify the topology of
the system
Modules exposes parameters that could be assigned or left
unassigned for the exploration phase
Strategies for cores not available in the library
New generators are added to the library and to the design
New HDL modules are added only to the design
At the end of this phase a model of the system is available:
Not all parameters are assigned
Functionality are all specified, but not architectures

Proposed flow

Constraints setting

The designer could specify some constraints to guide the exploration
phase, according to the information stored in RRCache
Most common: area and delay

Constraints can be imposed on top level or on modules
Space analysis
Different solutions are analyzed and compared, and the most suitable
solutions are proposed
RRCache supports this phase
The designer could change the parameters to perform different
explorations
Simulation, synthesis and back-end
An external simulators is used; if the result is not satisfactory another
iteration is performed
Finally, synthesis and back-end are performed with commercial tools.

Parametric cores

Modules composing the library

Atomic IP or atom: very simple module with no internal
hierarchy

Molecular IP or molecule: composite module constituted of
Atoms of Molecules
Hierarchy is obtained combining the generators and not
the modules themselves

TOP TOP _(GEN

i A GEN

A

)]

& 2 | C_GEN
¥
-

[B ‘ B_GEN

Parametric cores

» Both atoms and molecules are characterized by
parameters

» Molecules have opacity as an additional property
— The degree of opacity changes the way its structure is visible

from outside

« Transparent: all the parameters are exported to the top level
— The molecule exposes all its constituents
+ Semi-transparent: parameters are exported only at a given level of
hierarchy

+ Opague: only parameters related to top level are visible

— No parameter related to molecule constituents is accessible for the
exploration

Parametric cores

» Example: FIR FILTER

OPAQUE

X

n

clk —

rst — Yn

2 a a, anq

Number of TAPS

Weights

Active clock edge

Active reset level 10

Parametric cores

» Example: FIR FILTER
SEMI-TRANSPARENT
[] []
STTUTTUTL
clk—
rst — I w v ¥n
\
2 a a anq
Number of TAPS Multiplier architecture
Weights Adder architecture
Active clock edge
Active reset level 11

Parametric cores

» Example: FIR FILTER
TRANSPARENT
. D N7 D Y
rst —| %, ‘ n
!
2 a a, anq

Number of TAPS Multiplier architecture Architecture of adders

Weights Adder architecture to build multipliers

Active clock edge

Active reset level 12

Parametric cores

When structuring the system the designer must:
Instantiate atoms and molecules,
Connect them and
Assign values to parameters

A parameter can be explorable or non-explorable

Explorable parameters can be left unassigned in the design
phase and determined during exploration

The value of a parameter can be fixed or variable

A fixed value is assigned by the designer, a variable one is left
free for the exploration

A value can be defined at top level or at module level

For example reset is defined at top level and inherited by all
submodules

13

Parametric cores

Parameters and values properties

PARAMETERS
Explorable Non-explorable
Module X X
Fixed
Top-level X X
VALUE
Module X
Variable
Top-level X

14

Parametric cores

Parameters and values properties

PARAMETERS
Explorable Non-explorable
Module X X
Fixed
Top-level X X
VALUE
Module X
Variable
Top-level X

15

Parametric cores

A complete design is composed of modules and a
number of module-level and top-level parameters, some
of them explorable and variable

These parameters define the dimension of the design space
The exploration is basically an efficient analysis of all
possible assignments of values to parameters under a
set of constraints

Minimum clock period, maximum combinatorial delay, minimum

area
The exploration relies on values stored in a database
and on an interpolation mechanisms to extract values
not stored

16

Simple example: computation of
F(A, B, K) = sin (A+B) - 2k

n+1+2"

Sine

Shifter

=
3

Adder architectures: ripple-carry, carry look-ahead
Sine function architectures: LUT, CORDIC pipelined,
CORDIC iterative

Shifter architectures: arithmetic or logarithmic
17

Experimental results

Parameters: n is fixed at 8 and m at 3
Area and time figures of each module are considered

For sequential modules throughput and latency are also

considered:
The CORDIC iterative architecture requires 9 clock cycle to
compute the data
The CORDIC pipelined architecture provide a result every clock
cycle after an initial latency of 9 cycles

LSI_10k (mils) Virtex-1l Pro (LUT)

Optimization for Optimization for
Area Time Area Time

Adder-cla 81 273 9 9
Cordic-pl 6992 7164 179 184
Cordic-it 1565 1632 107 116

Experimental results

Three different types of constraints:
Area optimization
Module FPGA Tech. Asic Tech.
Adder Adder-RC Adder-RC
Sine Comp. Cordic-it LUT
Shifter Shifter-log Shifter-log
Area/timing tradeoff
Module FPGA and Asic Tech.
Adder Adder-RC
Sine Comp. LUT
Shifter Shifter-log
Timing optimization
Module Max Throughput Min delay
Adder Adder-CLA Adder-CLA
Sine Comp. Cordic-pl LUT
Shifter Shifter-log Shifter-log

Conclusions

This paper presents a new methodology for the design of
complex data-paths. Major novelties:

Rich library of module generators from very simple ones (adders,
shifters, ...) to rather complex ones (CORDIC, FFT, ...)

Modules are highly parametric; only functionality needs to be
specified allowing to exploit architectural details for space
exploration

The VHDL code is clear and readable, important both for
documentation purposes and for maintainability/customizability

The exploration algorithm relies on figures derived from pre-
characterization of the modules or from estimates.
The current design flow relies on a preliminary
implementation but formal aspects have been already
defined

20

10

