
1

Politecnico di Milano

A data-path oriented, IP-Based
Framework for Flexible Design 

Exploration

Speaker: Laura Frigerio
LFrigerio@Elet.polimi.it

C. Bolchini, C. Brandolese, W. Fornaciari, F. Salice

2

Goals
The paper aims at proposing a new design flow, based 
on VHDL code generators, allowing both
– a fast design of parametric specifications and 
– a fast redesign in order to respect tight constraints

Key aspects:
– Code readability
– Technology independence
– Parametric specification in term of both size and architectural 

aspects

The activity focuses on portions of the design do not 
usually covered by standard (and complex) IP cores



2

3

Introduction
Development of digital designs:
– HDL has been the common practice for 15 years but productivity 

gap enforce the development of more efficient techniques
– High Level Synthesis raises the abstraction level but is not 

completely satisfactory
– IP-Based Design is a more promising solution but with some 

drawbacks
• Implemented functionality are usually standards or complex blocks

– Subset of user needs
• HDL source is not even disclosed

– hard modifications

4

IP flows paradigms
The current IP-based methodology partitions the design 
in two portions: standard blocks and sparse logic
This work is a preliminary proposal for an intermediate-
level block-based design flow aimed at filling the gap 
between the two portions
Core-based design:
– Pre-verified cores are integrated in the design

+ Only the integration has to be performed
- Insufficient flexibility

Design for reuse
– Internal development of cores is performed

+ Great flexibility
- More development effort



3

5

Proposed flow
The proposed flow

The framework is based on the RoadRunner toolset 
composed by:
– RRCore: collection of parametric core generators
– RRCache: database storing core characterization integrated with 

an estimation engine for uncharacterized modules.

6

Proposed flow
System definition
– High Level Schematic Entry exploits cores available in the 

RRCore; the schematic entry allows to identify the topology of 
the system

– Modules exposes parameters that could be assigned or left 
unassigned for the exploration phase

– Strategies for cores not available in the library
• New generators are added to the library and to the design
• New HDL modules are added only to the design

– At the end of this phase a model of the system is available:
• Not all parameters are assigned
• Functionality are all specified, but not architectures



4

7

Proposed flow
Constraints setting
– The designer could specify some constraints to guide the exploration 

phase, according to the information stored in RRCache
• Most common: area and delay

– Constraints can be imposed on top level or on modules
Space analysis
– Different solutions are analyzed and compared, and the most suitable 

solutions are proposed
• RRCache supports this phase

– The designer could change the parameters to perform different 
explorations

Simulation, synthesis and back-end 
– An external simulators is used; if the result is not satisfactory another 

iteration is performed
– Finally, synthesis and back-end are performed with commercial tools.

8

Parametric cores
Modules composing the library
– Atomic IP or atom: very simple module with no internal 

hierarchy
– Molecular IP or molecule: composite module constituted of 

Atoms of Molecules

Hierarchy is obtained combining the generators and not 
the modules themselves



5

9

Parametric cores
Both atoms and molecules are characterized by 
parameters
Molecules have opacity as an additional property
– The degree of opacity changes the way its structure is visible 

from outside
• Transparent: all the parameters are exported to the top level 

– The molecule exposes all its constituents
• Semi-transparent: parameters are exported only at a given level of 

hierarchy
• Opaque: only parameters related to top level are visible

– No parameter related to molecule constituents is accessible for the 
exploration

10

Parametric cores

yn

Example: FIR FILTER

OPAQUE

Number of TAPS
Weights
Active clock edge
Active reset level

a0

Xn

a1 a2 an-1

clk
rst



6

11

Parametric cores

yn

Example: FIR FILTER

Number of TAPS
Weights
Active clock edge
Active reset level

SEMI-TRANSPARENT

Multiplier architecture
Adder architecture

a0

Xn

a1 a2 an-1

clk
rst

12

Parametric cores

yn

Example: FIR FILTER

Number of TAPS
Weights
Active clock edge
Active reset level

TRANSPARENT

Multiplier architecture
Adder architecture

Architecture of adders 
to build multipliers

a0

Xn

a1 a2 an-1

clk
rst



7

13

Parametric cores
When structuring the system the designer must:
– Instantiate atoms and molecules,
– Connect them and
– Assign values to parameters

A parameter can be explorable or non-explorable
– Explorable parameters can be left unassigned in the design 

phase and determined during exploration

The value of a parameter can be fixed or variable
– A fixed value is assigned by the designer, a variable one is left 

free for the exploration

A value can be defined at top level or at module level
– For example reset is defined at top level and inherited by all 

submodules

14

Parametric cores

Parameters and values properties

XTop-level

XModule
Variable

XXTop-level

XXModule
Fixed

VALUE

Non-explorableExplorable

PARAMETERS



8

15

Parametric cores

Parameters and values properties

XTop-level

XModule
Variable

XXTop-level

XXModule
Fixed

VALUE

Non-explorableExplorable

PARAMETERS

16

Parametric cores
A complete design is composed of modules and a 
number of module-level and top-level parameters, some 
of them explorable and variable
– These parameters define the dimension of the design space

The exploration is basically an efficient analysis of all 
possible assignments of values to parameters under a 
set of constraints
– Minimum clock period, maximum combinatorial delay, minimum 

area

The exploration relies on values stored in a database 
and on an interpolation mechanisms to extract values 
not stored



9

17

Experimental results
Simple example: computation of 

F(A, B, K) = sin (A+B) · 2k

Adder architectures: ripple-carry, carry look-ahead
Sine function architectures: LUT, CORDIC pipelined, 
CORDIC iterative
Shifter architectures: arithmetic or logarithmic

18

Experimental results
Parameters: n is fixed at 8 and m at 3
Area and time figures of each module are considered 
For sequential modules throughput and latency are also 
considered:
– The CORDIC iterative architecture requires 9 clock cycle to 

compute the data
– The CORDIC pipelined architecture provide a result every clock 

cycle after an initial latency of 9 cycles

...
11610716321565Cordic-it
18417971646992Cordic-pl

9927381Adder-cla
TimeAreaTimeArea

Virtex-II Pro (LUT)
Optimization for

LSI_10k (mils)
Optimization for



10

19

Experimental results
Three different types of constraints:
– Area optimization

– Area/timing tradeoff

– Timing optimization

Shifter-log
LUT

Adder-RC
Asic Tech.

Shifter-logShifter
Cordic-itSine Comp.

Adder-RCAdder
FPGA Tech.Module

Shifter-log
LUT

Adder-RC

Shifter
Sine Comp.
Adder

FPGA and Asic Tech.Module

Shifter-log
LUT

Adder-CLA
Min delay

Shifter-logShifter
Cordic-plSine Comp.

Adder-CLAAdder
Max ThroughputModule

20

Conclusions
This paper presents a new methodology for the design of 
complex data-paths. Major novelties:
– Rich library of module generators from very simple ones (adders,

shifters, ...) to rather complex ones (CORDIC, FFT, ...)
– Modules are highly parametric; only functionality needs to be 

specified allowing to exploit architectural details for space 
exploration

– The VHDL code is clear and readable, important both for 
documentation purposes and for maintainability/customizability

– The exploration algorithm relies on figures derived from pre-
characterization of the modules or from estimates.

The current design flow relies on a preliminary 
implementation but formal aspects have been already 
defined


