## Blockage Oriented Placement

Taraneh Taghavi
Majid Sarrafzadeh

Computer Science Department, UCLA
Email:\{taghavi,majid\}@cs.ucla.edu

## Motivation

Placement cannot be blind to obstacles.
Wirelength estimation methods considering blockage is needed early in design cycle Provides us guidelines to place macro cells.

- Placement should consider obstacle effect for placing standard cells

Obstacle parameters: aspect ratio, area, displacement

## Background

Wirelength estimation methods by now:
Hierarchical WL estimation, w/o blockage
Flat WL estimation, with blockage
WL estimation method
Hierarchical wirelength estimation considering blockage based on Rent's rule
Placement planning method
determine areas to place standard cells

## Presentation Outline

Hierarchical WL estimation method
Algorithm
Experimentation
Guidelines
Placement planning
Algorithm
Simulation
Conclusion

## Previous Works

Landman and Russo[1971], improved by Donath[1979]
Stroobandt and Campenhout[1996],estimation improvement considering non uniform probability Cheng et.al.[2002], flat approach considering blockage

Redistribution
Detour

## Methodology

Circuit partitioned into four sub-circuit
Each level of hierarchy:
Number of interconnections
Average length of interconnections b/w two sub-circuit of same $(h+1)$, different $h$ level
Wirelength equals to:

$$
L_{t o t}=\sum_{h=0}^{H} n_{h} L_{h}
$$

## Average Number of Interconnection

Rent rule for a sub-circuit of K cells:

$$
T=A K^{P}
$$

Total of C cells, divided into groups of K

$$
T_{\text {total }}(K)=A K^{P} \frac{C}{K}=A C K^{P-1}
$$

Number of interconnection among all circuits of size K: $\quad N(K)=\alpha A C K^{P-1}$

- Average number of interconnections:

$$
n_{h}=N\left(4^{h}\right)-N\left(4^{h+1}\right)
$$

- By substitution we have:

$$
n_{h}=\alpha A C\left(1-4^{P-1}\right) 4^{L(P-1)}
$$

## Average Length of interconnection

- Transparent Block wirelength when the obstacle is transparent
Detour
detour length needed in presence of obstacle
$\bar{L}=\bar{L}_{T B}+\bar{L}_{D T}^{h}+\bar{L}_{D T}^{v}$



## Average Intra-Bin WL



Single Obstacle:
$\bar{L}_{T B, \text { intra }}=\psi(N, M, W, H, a, b) /(N M-W H)^{2}$

$$
\begin{aligned}
& \psi(N, M, W, H, a, b)=\iiint \int_{P_{1}, P_{2} \in A-S}\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right) d x_{1} d x_{2} d y_{1} d y_{2}= \\
& \quad \frac{1}{6}\left(2 N^{2} M^{2}(N+M)+2 W^{2} H^{2}(H+W)-\right. \\
& \left.6 N M H W(N+M-2(a+b))-\quad H W\left(M W^{2}+N H^{2}\right)-12 H W\left(M a^{2}+N b^{2}\right)\right)
\end{aligned}
$$



## Average Inter-Bin WL

- Horizontally Adj.Bins

Transparent Block
$\bar{L}_{T B, \text { inter }}=\frac{\psi(2 N, M, W, H, a, b)-\psi\left(N, M, W_{1}, H, a_{1}, b_{1}\right)-\psi\left(N, M, W_{2}, H, a_{2}, b_{2}\right)}{\left(M N-W_{1} H\right)\left(M N-W_{2} H\right)}$
Detour, Vertically
$\bar{L}_{D T, \text { iner }}^{v}=\operatorname{Pr}_{D T}^{v} \cdot L_{D T, \text { iner }}^{v}$
$\operatorname{Pr}_{D T}^{v}=\frac{2 H\left(N-a_{1}-W_{2} / 2\right) H\left(a_{1}-W_{1} / 2\right)}{\left(M N-W_{1} H\right)\left(M N-W_{2} H\right)}$
$\bar{L}_{D r, \text { inere }}^{v}=\frac{1}{3} H \frac{2 H\left(N-a_{1}-W_{2} / 2\right) H\left(a_{1}-W_{1} / 2\right)}{\left(M N N-W_{1} H\right)\left(M N-W_{2} H\right)}$
Detour, Horizontally is similar
Vertically Adj. and Diagonally Adj. Bins is
 similar

## Average Interconnection Length in Each

 Level of Hierarchy

## Experimental Setup

Estimation of wirelength after the placement:

Integrate implementation on Dragon placement tool
Actual wirelength consists of two parts
HPWL obtained from the placement
estimation of the transparent-block part of the actual wirelength
Estimated detour wirelength

## Simulation Result I: Total wirelength as a function of the obstacle displacement

| Circuit | Obstacle Position | Estimated WL | Actual WL |
| :---: | :---: | :---: | :---: |
| Test 3 | Center | 2.03 | 1.46 |
|  | Right Center | 2.46 | 1.42 |
|  | Top Center | 2.31 | 1.45 |
|  | Top Right Corner | 2.72 | 1.48 |
| Adaptec2 | Center | 166.8 | 121.34 |
|  | Right Center | 176.45 | 125.54 |
|  | Top Center | 171.92 | 131.43 |
|  | Top Right Corner | 181.78 | 128.47 |
| Adaptec3 | Center | 266.67 | 224.73 |
|  | Right Center | 278.56 | 234.87 |
|  | Top Center | 289.34 | 254.33 |
|  | Top Right Corner | 293.22 | 268.32 |
| Average Error (\%) |  | 38.83 | 0.0 |

Observation1:Minimum WL when blockage is in the center

## Simulation Result II: Total wirelength as a function of the obstacle aspect ratio

Observation2: Minimum WL when AR =1

WL increasing getting further from AR = 1 in both directions
WL is symmetric function of (width + height)


## Simulation Result III: Total wirelength as a function of the obstacle area

Observation3: WL increases with the increase of Blockage area

| Circuit | Area <br> Rat <br> io | Estimated <br> WL | Actual <br> WL |
| :---: | :---: | :---: | :---: |
| Test3 | $2.5 \%$ | $\mathbf{2 . 6}$ | 1.41 |
|  | $5.0 \%$ | $\mathbf{2 . 4 6}$ | 1.42 |
|  | $12.5 \%$ | $\mathbf{2 . 5 4}$ | 1.55 |
| Adaptec2 | $2.5 \%$ | $\mathbf{2 4 3 . 2 4}$ | 198.67 |
|  | $5.0 \%$ | $\mathbf{2 6 6 . 5 7}$ | 224.73 |
|  | $12.5 \%$ | $\mathbf{2 9 7 . 3 4}$ | 263.23 |
|  | $2.5 \%$ | $\mathbf{1 5 2 . 1 1}$ | 118.21 |
|  | $5.0 \%$ | $\mathbf{1 6 6 . 8}$ | 121.01 |
|  | $12.5 \%$ | $\mathbf{1 7 8 . 2 1}$ | 132.12 |
| Average Error (\%) |  | $\mathbf{3 4 . 8 8}$ | 0.0 |

## Presentation Outline

Hierarchical WL estimation method
Algorithm
Experimentation
Guidelines
Placement planning
Algorithm
Simulation
Conclusion

## Placement Planning

Placement Planning embedded into the placement flow right before doing placement for standard cells
Denotes how to determine good boxes to place standard cells

## Experimental Result

Manually consider different boxes
placement for standard cells on those boxes
chose the one which resulted in shortest wirelength
wirelength improvement after placement was about $4.4 \%$ on average.

| Circuit | WL with Placement <br> Planning | WL without Placement <br> Planning |
| :---: | :---: | :---: |
| Adaptec1 | 88.6 | 83.2 |
| Adaptec2 | 104.5 | 95.1 |
| Adaptec4 | 204.6 | 203.8 |
| Bigblue1 | 106.4 | 103.3 |
| Bigblue4 | 946.3 | 903.9 | 9\%

## Placement Planning Automation

## Different parameters

Connectivity to the fixed I/Os
Utilization of the box
Effect of narrow slivers between the big macro cells
Blockage map inside the box
Open area in the box

## Placement Planning Automation (Cont.)



Deterministic Vs. Non-Deterministic approaches

## Advantage

Easy to implement
Drawback
Local improvement may not lead to global improvement

## Solution

Non-deterministic approach

## Non-Deterministic Approach

Considering Probability Distribution for each box Specific area
Different probabilities for width and height of different boxes

$$
L_{i}=\left(w_{i 1}, h_{i 1}, p_{i 1}\right), \ldots,\left(w_{i m}, h_{i m}, p_{i m}\right), \sum_{j=1}^{m} p_{i j}=1
$$

Considering search space for each partition
Refining like deterministic case
Assigning probability distribution for merging

## Presentation Outline

- Hierarchical WL estimation method

Algorithm
Experimentation
Guidelines
Placement planning
Algorithm
Simulation
Conclusion

## Conclusions

Hierarchical Technique for WL estimation
Average error of 30-40\%
Study of effects of displacement, aspect ratio and area of blockage
Application: early design stage
Guidelines for determining location and/or aspect ratio of IP blocks
Placement Planning to determine location of standard cells on chip area


