



#### Outlines

- Interconnect Technologies
  - Buffers, Pitches, Circuit Styles
- Geometrical Planning
  - Wire Orientations, Chip Shapes
- Interconnect Networks
  - Topologies, Wire Styles
- Power and Clock Distributions
- Functional Modules
  - Adders, Shifters
- Conclusion

#### **Interconnect Technologies**

- RC Wires
  - Wire Pitch, Width, Separation
  - Buffer Size, Buffer Interval
- Transmission Line
  - RLCG



| Interconnect T                                                  | echnologi              | es sr                       | C Roadmap 2005                         |
|-----------------------------------------------------------------|------------------------|-----------------------------|----------------------------------------|
| Year (On-Chip)                                                  | 2005                   | 2010                        | 2015                                   |
| r <sub>n</sub> c <sub>n</sub> (ps) <sup>T40</sup>               | 0.870                  | 0.400                       | 0.180                                  |
| r <sub>w</sub> c <sub>w</sub> (ps/mm) <sup>тво</sup><br>metal 1 | 440                    | 1792                        | 5951                                   |
| interval (um)                                                   | 136                    | 45.7                        | 16.8                                   |
| delay (ps/um)                                                   | 0.120                  | 0.164                       | 0.200                                  |
| $Int = \sqrt{\frac{2(1+f)r_nc_g}{r_wc_w}},$                     | $Delay(l_{tr})/l_{tr}$ | $x = (2 + \sqrt{2(1 + 1)})$ | $\overline{f}))\sqrt{r_n r_w c_g c_w}$ |













#### **Theory (Telegrapher's Equation)**

• Telegrapher's equation:

$$\frac{dV(z,t)}{dz} = -RI(z,t) - L\frac{dI(z,t)}{dt}$$
$$\frac{dI(z,t)}{dz} = -C\frac{dV(z,t)}{dt} - GV(z,t)$$

• Propagation Constant:

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$$

• Wave Propagation:

$$V(z) = V_0 e^{-\alpha z - j\beta z}$$

• Alpha and Beta corresponds to speed and phase velocity. Both are frequency dependant

# <section-header> Theory (Distortionless Line) Set G=RC/L Frequency Independent speed and attenuation: α = R / √L/C, β = ω√LC Characteristic impedance: (pure resistive) Z<sub>0</sub> = √L/C Phase Velocity (Speed of light in the media) w = 1/√LC = c Attenuation: A(z) = e<sup>-R/Z<sub>0</sub>z</sup>

#### **Digital Signal Response**





(b) Time domain pulse response of typical on-chip wire and distortionless transmission line



#### **Interconnect Tech.: Transmission Line**

 Add shunt conductance between differential wires



• Resistors realized by serpentine unsilicided poly, diffusion resistors, or high resistive metal



### **Geometrical Planning**

- Wire Orientations
  - Manhattan, Hexagonal, Octagonal, Euclidean
- Die Shapes
  - Rectangle, Diamond, Hexagon, Octagon, Circle

| Average R   | adius o | of Unit-( | Circle A | rea     |
|-------------|---------|-----------|----------|---------|
| lambda geo. | Man.    | Y-Arch    | X-Arch   | Euclid. |
| Shape       |         |           |          |         |
| Square      | 1.329   | 1.122     | 1.070    | 1.017   |
| Diamond     | 1.253   | 1.121     | 1.070    | 1.017   |
| Hexagon     | 1.276   | 1.100     | 1.058    | 1.003   |
| Octagon     | 1.272   | 1.104     | 1.054    | 1.001   |
| Circle      | 1.273   | 1.103     | 1.055    | 1.000   |
| L           | 1       |           |          |         |

| lambda geo.<br>Shane | Man.  | Y-Arch | X-Arch* |
|----------------------|-------|--------|---------|
| M: Square            | 1.000 | 1.225  | 1.346   |
| M: Diamond           | 1.195 |        |         |
| Y: Hexagon           |       | 1.315  |         |
| X: Octagon*          |       |        | 1.420   |















#### **Interconnect Networks**

- Optimized Interconnect Architecture
  - Data Bus, Control Signals
- Shared Interconnect
  - Packet Switching
  - Circuit Switching
  - RTL Level Partition



#### **Interconnect Networks**

- Obj: Power, Latency
- Constraints:
  - Routing Area, Bandwidth
- Design Space:
  - Topology
  - Wire Styles, Switches
- Model:
  - Traffic Demand
  - Data Bus, Control Signals











#### **Clock: Linear Variations Model**

- Process variation model
  - Transistor length
  - Wire width
  - Linear variation model

## $d = d_0 + k_x x + k_y y$

- Power variation model
  - Supply voltage varies randomly (10%)























#### Conclusion

- Interconnect Technologies
- Geometrical Planning
- Interconnect Networks
- Power and Clock Distributions
- Functional Modules

#### **Interconnect Technologies**

Example: w= 85nm, t= 145nm  $r_n = 10$ Kohm, $c_n = 0.25$ fF, $c_g = 2.34xc_n = 0.585$ fF  $r_w = 20$ hm/um,  $c_w = 0.2$ fF/um Optimal interval  $l = \sqrt{\frac{2(1+f)r_n c_g}{r_w c_w}} \approx 242 \mu m$ Optimal buffer size  $s = \sqrt{\frac{r_n c_w}{r_w c_g}} \approx 41$ Optimal delay  $Delay(l_w)/l_w = (2 + \sqrt{2(1+f)})\sqrt{r_n r_w c_g c_w} \approx 194 fs/\mu m = 194 ps/mm$ 

|            | skew      |           |        |  |
|------------|-----------|-----------|--------|--|
| total area | s-mesh(s) | m-mesh(s) | ratio  |  |
| 0.00       | 2.92E-11  | 2.92E-11  | 100.0% |  |
| 0.25       | 2.79E-11  | 2.60E-11  | 93.2%  |  |
| 0.40       | 2.71E-11  | 2.45E-11  | 90.4%  |  |
| 1.00       | 2.42E-11  | 1.98E-11  | 81.8%  |  |
| 3.00       | 1.70E-11  | 1.24E-11  | 73.2%  |  |
| 5.00       | 1.24E-11  | 8.72E-12  | 70.5%  |  |

| total area | mutli-level mesh |          | single-level mesh |          |
|------------|------------------|----------|-------------------|----------|
|            | ave              | worst    | ave               | worst    |
| 0.00       | 2.10E-11         | 2.91E-11 | 2.10E-11          | 2.91E-11 |
| 1.00       | 8.38E-12         | 1.14E-11 | 8.26E-12          | 1.43E-11 |
| 2.00       | 2.71E-12         | 4.42E-12 | 6.18E-12          | 1.11E-11 |
| 3.00       | 1.89E-12         | 3.33E-12 | 4.83E-12          | 8.73E-12 |
| 4.00       | 1.45E-12         | 2.48E-12 | 3.88E-12          | 6.96E-12 |
| 5.00       | 1.16E-12         | 2.02E-12 | 3.18E-12          | 5.64E-12 |