Recommended Rules NOT Recommended

Lou Scheffer

EDP 2006 Lou Scheffer, Cadence

Origin of recommended rules

- Originally, design rules were the contract between designer and fab
 - Follow the rules and the chip can be built
 - Does not cover parametric yield
- But modern rules are not really binary and are set aggressively
- A small chip might have OK yield with everything set to minimum
- A large chip may have poor yield
- Mathematically, the true min spacing (for example) is a function of chip size and desired yield

- But rules that vary with chip size have practical problems
 - Chip size may not be known (IP for example)
 - No infrastructure for this (DRC)
- Hence 'recommended rules'
 - If you follow this rule your yield will be better
 - How much better, rule does not say

Recommended rules and optimizations

- Typical recommended rules
 - Double vias where possible
 - Add extra spacing where possible
 - Add more extension around vias where possible
- Unfortunately, these do not work well at all
- If you have enough room so all recommendations can be followed might be OK.
 - But this is seldom the case

Choice of recommended rules

- Historically, smallest chips are best, so no designer will make their chip bigger just to follow recommended rules
- Therefore designer must normally choose which recommended rules to follow.
- But the rules give no guidance for this

A simple experiment

- In some cases the real data exists
 - Quantitative data on single vs double via
 - Defect density for opens/shorts of different wire spacings and widths
- Using this data, we can see how well recommended rules work

More accurate approach to min spacing

The "correct" answer is to compute critical area curves, mpy by particle density, integrate over all particle sizes

Practical example – cramming double vias

- Hypothesis "double via" rule is more important than the "avoid min spacing" rule
- Experiment use a router with different settings for inserting double vias
 - + Do where it's easy, post process to double vias
 - ++ Move lines to double vias, topology unchanged
 - +++ Do during routing, can change topology
- Even if you only consider vias and particles, best results require tradeoffs

Routing Yield Optimization

- Concurrent: Swap double-cut vias for single-cut vias while routing
 - dynamically check local congestion
 - change routing topology to allow more swapping
 - Effects on timing, SI and yield can be handled concurrently and during later ECO steps

More aggressive router setting, more double vias

But max doubling does not optimize yield!

Design Name	#Layers	#Nets	No Routing Opt	Wire-Spread + Via Reduction + Post-Route Via Opt	Wire-Spread + Via Reduction + Aggressive Concurrent Via Opt	Yield % Change
В	90nm / 7	235k	92.51	92.99	93.17	+0.67
S	130nm/ 7	363k	83.81	84.72	84.13	+0.91
Т	90nm / 8	552k	71.46	73.45	72.87	+1.99
N	90nm / 7	1.1M	81.89	82.43	82.56	+0.67
A	90nm / 8	1.21M	82.13	84.73	84.89	+2.76

EDP 2006 Lou Scheffer, Cadence

Next, litho data may be needed

- Router must be able to trade off
 - Particle yield
 - Litho yield
 - Via yield
- All must be expressed in comparable units
- Note that litho yield is very hard to express as recommended rules

Next slides shows why this is needed

Example of tradeoffs in a simple case

worse process window

(c) Is this better? Depends on the numbers – via vs. lithography vs. Low Scheffer, Ciproreased size

Few recommended rules for width

- Exact models for point defects vary
 - 1/x^3, exponential, binomial
- But all models fall off very fast with radius, so
- Bigger width/spacing is always better
- Traditionally, shorts a bigger problem than opens
- And, extra spacing helps timing
- Hence, traditional wire spreading spreads wires, does not increase width, needs no hard data

But they will come, and they will conflict

- With copper process, opens also becoming important
 - Use extra space for wire widening, too
 - Double vias want space too
 - And extra enclosure is recommended
 - And forbidden pitches might need this space
- Now 3-4 different recommended rules could apply to every spot in a routed design!

So what should be done?

- Replace recommended rules on width/spacing with defect density data
- Replace recommended rules on via doubling with a via manufacturability model
- Add data on lithography, which is hard to do with recommended rules

Point defects (usually particle contamination)

- Based on the idea of 'critical area'
- Find odds of a short/open based on particle size distribution and geometry

EDP 2006 Lou Scheffer, Cadence

So we tell the router the particle density

- For each layer, and for opens and shorts independently.
 - Piecewise linear on a log scale

Then do critical area calculation

The "correct" answer is to compute critical area curves, mpy by particle density, integrate over all particle sizes

How we might model vias

- First, assume a 3 (or more) cut via is so much better than a 1 or 2 cut via that extra cuts don't matter
 - All vias classified as 1-cut, 2-cut, many (>= 3) cut.
- A common customer model
 - <u>1 cut vias</u> have a cost that depends on overlap
 - <u>2 cut vias</u> have a smaller and constant cost
 - <u>3 or more cut vias</u> have no cost
- Extension cost depends on distance to nearest other via (PDF is advocating this)

Representation of process window for router

- Assume long parallel lines.
- Read a table f(w1,s1,w,s2,w2). This has the litho windows under which the wire width is within various tolerances.

How can we derive/store the litho data?

- Build representative widths/spacings. For designs made by routers, typically about 2000 cases are needed, each very small.
- For each case, do OPC as you will in production.
- Now, for a variety of tolerances,
 - Simulate the lithography and find process window
- The process window becomes a table entry.
 - Examine design, compute process window for a layer
 - Use Monte Carlo over variables to compute failure probability

Big problem - reporting

- The users of a design tool are *NOT* process experts
- One advantage of recommended rules is that they are already in their language
 - Either a rule is met, or it is not
 - Error markers are integrated into layout editors
- If we replace by a calculation we must explain
 - Width, spacing, multiple vias, and enclosures are more or less intuitive
 - Objective: "good chips per wafer", not min size
 - But litho is not intuitive

Lithography issues

- We compute process windows internally
- But telling designers what to fix, and how to fix it, is hard
- Gridded routers are easier here

Reporting lithography

- This is especially hard to explain since there is NO MENTION in the design rules
- We've looked in detail at the rules from 2 large 65nm manufacturers
- Just minimum spacings and widths
- Litho considerations are not even in the "recommended" rules!
- Designer says "show me why this is bad", and we cannot point to anything in the rules

Conclusions

- Recommended rules work poorly
 - All cost area, conflict with each other, no way to choose
- Situation will get worse
 - Opens will create more conflicting rules
 - Litho is not easily expressible by recommended rules
- Need real numerical data instead
 - Particle densities, via fail rates, litho info
- Need to improve reporting to match

The End

EDP 2006 Lou Scheffer, Cadence