
Abstract
In order to build large complex systems that are robust 
(correct), we need a scalable and composable discipline. 
Each module's interface should specify a contract between 
the implementor and the client—if the client drives the 
module in certain legal ways, then the implementor 
guarantees that it will behave in certain well-specified ways. 
This is an old idea in software engineering, and is now 
finding its way into hardware design through assertions (e.g., 
PSL or SVA).  However, such a methodology will truly 
eliminate the “verification bottleneck” only if such contracts 
are both automatically derived from implementations and 
automatically enforced at clients, i.e., this is the very essence 
of the phrase “correct by construction”.  In this paper we 
describe how Bluespec SystemVerilog's Rules and Rule-
based Interfaces implement this idea.

1. Introduction
Due to Moore's Law, today's chips are SoCs (Systems on a 
Chip), with tens of millions of gates each.  The chip 
development cost is enormous, thereby demanding larger 
markets to recoup costs, but of course there are fewer large 
markets.   The cost of chip design failure is not merely the 
operations and materials expenses of a respin, but the 
potentially huge opportunity cost in missing or shrinking an 
available market window.

A central factor in chip development costs is the “verification 
bottleneck”.   Today, roughly 70% of development resources 
go into verification.  This is obviously the keystone that we 
must attack in order to solve the complexity problem.

One approach is to reuse existing or purchased “verified” IP 
blocks (Intellectual Property) to avoid designing a system 
from scratch.  Unfortunately, interfacing to such IP is itself 
proving to be a complex and costly problem.

Most of the above difficulties in verification and IP reuse can 
be attributed to the lack of any formal methodology in 
module composition. One cannot build a large edifice on 
creaky joints—the whole structure will be fragile and can 
collapse under the slightest unanticipated stress.

We need a systematic, powerful, formal way of specifying 
interfaces of modules, i.e., the contract between implementor 
and client.  It is immediately obvious that interface semantics 
must include behavior (signaling and scheduling protocols), 
not just structure (types and connectivity).  Further, interface 

behavior is intimately tied to the behaviors of a module and 
its client, and so interface semantics cannot be considered in 
isolation—they must integrate organically with module 
behavioral semantics.

This idea, that a module's interface must specify a contract 
between the implementor and the client, is an old idea in 
software engineering [Design By Contract], and is today 
finding its way into hardware design in the form of assertions  
attached to interfaces [Foster 2004, SynopsysABV 2003] in 
languages such as PSL [PSL 2005] and SVA, or 
SystemVerilog Assertions [SV 2005]. 

However, this idea will truly eliminate the “verification 
bottleneck” only if it is used constructively, i.e., when the 
contract is derived automatically for an implementation and 
and used while creating the client code so that, by 
construction, it cannot violate the contract.  In this way, it 
does not run into any of the limitations in the manual 
insertion of interface assertions: correctness of the assertions, 
completeness of the assertions, simulation speed, and the 
need to repeatedly check them at each of possibly hundreds 
of instances of a module.

Of course, one cannot expect automatically to infer the full 
interface contract for a module—that is an open-ended 
problem and is intractable in general.  However, Bluespec 
SystemVerilog's Rules and Rule-based Interfaces [BSV 
2004] capture a tractable and highly useful subset of interface 
semantics that can and are indeed used by the Bluespec 
synthesis tool in the automated, constructive way just 
described.  First, they provide the designer with a framework 
and vocabulary for thinking about and describing interfaces 
that are at a much higher level than the raw port lists found in 
RTL (and even in SystemC).  Second, they have a formal 
semantics that the synthesis tool can capture and represent 
explicitly.  Third, these formal semantics are used by the tool 
when generating code for client modules to guarantee correct 
use.  Since it captures a subset of interface semantics, it does 
not eliminate the verification problem nor the value of some 
types of assertions on the interface, but collectively, these 
properties eliminate the verification bottleneck by eliminating 
most of the common errors found in composing modules in 
hardware designs (illegal port use, race conditions, 
inconsistent states, wrong signaling, etc.).  This frees the 
designer to focus on the more important, higher-level 
verification issues.
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Organization of this paper
Section 2 is an analysis of current methodology based on 
today's RTL (Verilog, SystemVerilog and VHDL, and even 
SystemC), illustrating lack of composability and the way it 
contributes to the verification bottleneck.  Section 3 discusses 
some partial solutions, including assertions with PSL or SVA. 
Section 4 discusses how Bluespec SystemVerilog's Rules and 
Rule-based Interfaces take direct aim at the problem.  Finally, 
we summarize and conclude in Section 5.

2. Why current methodology based 
on RTL leads to the verification 
bottleneck
Terminology: in the following discussion, we will frequently 
use the term “IP block” (Intellectual Property block) to refer 
to a particular module, and the word “client”' to refer to the 
environment (the surrounding module) that uses the IP block.

Module interfaces in RTL are merely port lists.  When 
modules are interconnected, tools merely perform some 
rather trivial structural checks, e.g., that all ports are 
connected, that ports are connected to signals of the correct 
data type/width, etc.  VHDL and SystemVerilog have 
stronger notions of types and type checking, and have 
facilities to separate interface definitions from module 
definitions, which alleviate some of the tedium of writing 
port lists, but in the final analysis, the only semantic checks 
performed by tools are to ensure correct connection of ports 
to signals.

The central problem is that interfaces have no semantics of 
behavior, other than the low-level semantics of individual 
signals.  For every module, the designer starts from scratch to 
roll his own specification for the behavior across the 
interface.  For example, when designing a FIFO block, the 
designer may decide:

• The logical “enqueue” operation will involve three ports: 
an input data bus, an output ENQ_READY signal to 
prevent enqueueing into a full FIFO, and an input 
ENQ_ENABLE signal by which the client signals that it 
is actually enqueueing some data.

• Similarly, the logical “dequeue”' operation will involve 
three ports: an output data bus, an output DEQ_READY 
signal to prevent dequeuing from an empty FIFO, and an 
input DEQ_ENABLE signal by which the client signals 
that it is actually dequeuing some data.

• The logical “clear” operation to empty out the FIFO has a 
single input CLR_ENABLE signal.

Having decided the ports of the module, the designer will 
work on the contract for correct behavior by the client, 
involving rules on individual operations such as:

1. ENQ_ENABLE should never be asserted if 
ENQ_READY is false (except see rules (I) and (II) 
below).

2. DEQ_ENABLE should never be asserted if 
DEQ_READY is false.

3. ENQ_ENABLE should be asserted simultaneously with 
data being valid on the input data bus

The contract will also have rules involving multiple 
operations such as:

I. ENQ_ENABLE can be asserted even if ENQ_READY is 
false, if DEQ_ENABLE is asserted simultaneously 
(because, even though the FIFO is full, the newly 
enqueued datum can be placed in the slot being vacated 
by the dequeued datum).

II. If CLR_ENABLE is asserted, then ENQ_ENABLE and 
DEQ_ENABLE are ignored (they can be asserted even 
though the corresponding READY signals are false).

Such “contract” rules are typically specified informally in 
text and waveform diagrams in the data sheet for the FIFO. 
They are often incomplete or ambiguously written. 
Sometimes they are plain wrong, i.e., the text spec does not 
correspond to the actual implementation.  In at least one such 
FIFO data sheet from a major IP vendor, we found these rules 
buried in paragraphs spread over several pages.  As seen 
above, even for as simple and straightforward a block as a 
FIFO, the behavioral contract can be complex; it can get quite 
unmanageable for larger blocks or subsystems.

The above activity of the designer is reminiscent of the early 
days of computer programming where, for each subroutine, 
the programmer carefully designed a protocol about which 
arguments were carried in which registers, which arguments 
were carried in memory and how they were laid out in 
memory, etc.  Another programmer who used the subroutine 
had to carefully understand this protocol (assuming it was 
properly documented), and carefully craft his code 
accordingly.  It was worse: the subroutine designer's choice 
of register usage, in turn, affected the subroutine user's own 
register allocation decisions.  In other words, if the subroutine 
were replaced with a functionally equivalent subroutine with 
different argument and register conventions, the subroutine 
user may have had to adjust his own code accordingly.  In 
other words, this (lack of) methodology simply did not 
compose, and simply did not scale.  Thus, of course, this was 
a major source of bugs and fragility limiting reuse.  Today, 
with high-level languages and compilers, all these issues are 
removed from the programmer's concern, are never the 
source of bugs, and never need verification.  The compiler 
systematically produces code that is correct by construction.

The hardware designer using RTL faces the same kind of 
problem, today. For each use of every IP block, he must 
understand the port protocols assumed by the module 
designer (assuming they are fully documented).  Since each 
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module's port behavior is designed from scratch by the 
module designer, the IP user has to cope with all the different 
styles and conventions of different IP designers, i.e., 
understanding each IP block's port behavior is a completely 
fresh task.  Rules like (I) above affect the control circuitry in 
the client module, so that substituting a piece of IP by another 
which has the same port list and functionality but a slightly 
different contract also requires changes in the client.

This results in a major lack of scalability in Verification.  The 
designer of module B that uses an IP module A must not only 
think about the functionality of B (which is the focus of his 
attention), but he must also think about ways in which B 
might possibly violate the port behavior contracts of A.  He 
must devise verification tests to ensure that such violations 
never happen.  This must happen for every instance of A, e.g., 
if there are a hundred FIFOs in his design, then these 
verification checks must be devised and performed separately 
on each of those hundred instances.  Moreover, for the same 
corner case, each instance will need a uniquely designed test 
to drive it into that situation.

Needless to say, very few engineers have the patience to 
employ such diligence during block and subsystem tests, and 
so they often punt the problem to the final “system level” 
verification.  Unfortunately, once we are at system level, it 
becomes even harder to push some deeply embedded IP 
block into its corner cases.

The complexity of this verification obligation compounds 
itself as we build up from sub-blocks to blocks to subsystems 
and systems, i.e., this (lack of) methodology does not 
compose well.  Thus, verifying an entire system today is a 
nightmare, and it is impossible to cover all the corner cases.

To summarize, verification and IP reuse is hard, and 
increasingly intractable for large systems, because of the lack 
of a good formal semantic model for interface behavior, 
resulting in:

• No reusable methodology:

• IP designers start from scratch and roll their own 
interface protocols for each module they design. IP 
users start from scratch in understanding each IP's 
peculiar interface protocols.

• No standard way to document behavior, resulting in 
missing, incorrect, incomplete, ambiguous, confusing 
or hard-to-locate documentation.

• A complex verification obligation that is repeated at every 
instance of every module.

A higher-level formal semantics would, instead, allow each 
IP block to be verified thoroughly on its own, and then 
guarantee that it cannot be misused in any context.  The 
emphasis shifts to a thorough verification of a block in 
isolation, instead of the verification of its numerous 

instantiations in different contexts.

[Note: This analysis is orthogonal to the idea of using  “behavioral 
synthesis” to automate the process of going from scientific 
algorithms to hardware.  Such tools are typically  restricted to 
individual blocks and do not address the composition issues in 
building complex systems out of individual blocks.  The blocks 
generated by behavioral synthesis tools have the same issues of 
interfacing and reuse.  Indeed, the solution using Rule-based 
semantics recommended in this paper could be a suitable target for 
the hardware generated by behavioral synthesis tools.]

3. Partial solutions in related work
There are various partial solutions available in some tools and 
in the industry.

SystemVerilog allows the designer to define tasks in an 
interface.  Such a task can represent an entire interface 
operation (such as an enqueue  or dequeue into a FIFO), and 
can encapsulate all the specific port-signaling protocols. 
Client modules, instead of directly signaling ports,  invoke 
these tasks instead.  This allows the designer to define the 
behavior of transactions on a module in one place, in the 
interface [SV 2005] itself.  However, these are just layered on 
top of port lists, and explained in terms of inlining the tasks 
wherever they are called, i.e., they do not introduce any 
fundamental new formal model of behavior on the interface. 
They are also weak in that if the ports are shared, i.e, the task 
is to be called from multiple concurrent processes, then they 
do not provide any straightforward way to deal with the 
necessary multiplexing and arbitration.

The SPIRIT Consortium [SPIRIT] is attempting to define 
standards for IP reuse by using XML-based descriptors of IP 
blocks.  But, once again, these are just layered on top of 
standard RTL and RTL's port lists.  It does not introduce any 
fundamentally improved formal model of behavior.

SystemC uses the concept of methods from C++ to describe 
interfaces as transactions rather than signals.  However, 
synthesizable SystemC still relies on RTL-like signals for 
communicating between modules.  But even for modeling 
purposes, where we may not be interested in synthesizability, 
C++'s methods just give an open-ended mechanism, not a 
semantics or methodology.  It is hard to see how any tool can 
usefully exploit this higher level of abstraction to do any 
static verification.

The most promising partial solution is the use of assertions 
using PSL [PSL 2005], SystemVerilog Assertions (SVA) [SV 
2005], or OVL [AccelleraOVL 2005] at interfaces to express 
correctness conditions on the port protocols [Foster 2004, 
SynopsysABV 2003].  The idea is to attach immediate and 
temporal assertions to interfaces, using one of the above high-
level, declarative, logic-based languages to describe formal 
correctness properties of the interactions at the interface.

However, assertions are still only a partial solution for the 
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following reasons:

• The onus remains on the IP block designer or 
verification engineer to create necessary and sufficient 
assertions to correctly and completely characterize the 
port protocol contracts.  Achieving this level of 
precision is very hard for all but the simplest of blocks. 
The designer often finds it hard to translate his intent 
into a watertight formal logic statement.

• In the current state of the art, assertions are checked by 
simulation.  In addition to affecting overall simulation 
speed, one still has the difficult problem of designing 
testbenches that will drive internal IP blocks into their 
corner cases, in order to ensure complete coverage, i.e., 
have all the assertions been exercised sufficiently to 
catch all the corner cases?

• In the future, assertions will increasingly be checked 
statically, using theorem proving, so that coverage will 
be complete and simulation speed is not affected. 
However, because assertions are a very powerful 
language, progress towards this goal is likely to be slow 
and will take many years.  Even assuming that these 
technologies were available, the (manual) work to add 
assertions will always be time-consuming and error-
prone, and likely to be incomplete.

The question is: is there a more limited style and scope 
of assertions that is adequate for the job and known to 
be more tractable than general-purpose assertions?  The 
Rule-based semantics advocated below are an answer.

In summary: while there are many partial steps towards 
alleviating the verification bottleneck, the lack of a suitable 
high-level, compositional, formal behavioral semantics is 
hindering progress.

4. Rules and Rule-based Interfaces 
address the correctness problem 
automatically and scalably
Rule-based systems have a long history in the study of 
semantics, parallelism, and concurrency in Computer 
Science.  There is a rich body of theory on Term Rewriting 
Systems [Baader & Nipkow 1998, TRS 2003] which are the 
basis of Rules.  Rule-based systems have been central to the 
study of complex systems in Artificial Intelligence [Winston 
1992] and the study of complex parallel programming 
[Chandy & Misra 1998].  All this work is focused on 
correctness, which is the central objective of verification.

The power of Rules in reasoning about correctness arises 
from its property of atomicity  [Lynch et.al. 1993].  A rule 
can express complex, dynamically determined state 
transitions based on complex dynamic conditions. 

Nevertheless, atomicity allows the designer to reason about 
correctness one rule at a time.  For each rule, assuming that 
the system starts in a consistent state, we can check if the 
rule's state transition leaves the system in a consistent state—
atomicity allows us to not have to worry about any other 
concurrent activity.  When the correctness of individual rules 
is established, the composition of these rules is automatically 
correct.  This makes it scalable to large, complex systems.

The concept of atomicity was the fundamental breakthrough 
in managing complex concurrency in the software field 
(operating systems, databases, distributed systems).  Bluespec 
SystemVerilog [BSV 2004] (BSV) brings the same power to 
an HDL (Hardware Design/Description Language).  It is this 
formal semantic model that allows us to specify concurrent 
behavior simply, precisely and formally which, in turn, 
enables a scalable methodology to build complex hardware 
systems correctly, by construction (i.e., eliminating 
significant aspects of the verification task).

Referring to the FIFO example of Section 2, instead of port 
lists, BSV defines interfaces using methods, as shown below.

The enq method encapsulates all the ports described in 
Section 2: the input data bus (whose width depends on the 
particular data type to which the generic type x_t is 
instantiated), the output ENQ_READY signal, and the input 
ENQ_ENABLE signal.  Similarly, the deq method 
encapsulates all the ports described in Section 2: the output 
data bus, the output DEQ_READY signal and the input 
DEQ_ENABLE signal.

In general, method arguments become module input data bus 
ports.  Method results (such as that returned by deq), become 
output data bus ports.  A method can have multiple output 
data bus ports because return-types can be structs with 
multiple fields, and vectors.  All methods, in principle, have 
an output READY signal.  All Action and ActionValue 
methods (like those shown), in principle, have input 
ENABLE signals.  Action and ActionValue methods are 
sequential, i.e., they can cause a state change inside the 
module.  A third kind of method, which we call value 
methods, are purely combinational—their results are 
combinational functions of their arguments and internal 
module state.  The compiler may optimize away the implicit 
READY and ENABLE signals of a method if it proves that 
they are always asserted.

A client module that uses the FIFO contains Rules that 
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interface FIFOBuf#(x_t);
  method Action            enq   (x_t  x);
  method ActionValue#(x_t) deq   ();
  methoc Action            clear ();
endinterface



operate the enq and deq methods, as in the example below.

Each rule has an explicit condition, depicted above as the 
expressions cond1 and cond2.  These are pure combinational 
boolean expressions.  Each rule also contains one or more 
actions that can be executed atomically only if the rule 
condition is true.  For example, the upstream rule contains an 
action that enqueues the value of expression expr1 into the 
FIFO, and the downstream rule contains an action that 
dequeues an item x from the FIFO.

The conditions of all methods operated by a rule are 
incorporated into the overall condition of the rule.  For 
example, the ENQ_READY signal is “AND”ed with cond1 
to determine the overall condition of the upstream rule.  The 
DEQ_READY signal is “AND”ed with cond2 to determine 
the overall condition of the downstream rule.

A rule can only fire (execute) if all its conditions permit it. 
When it fires, all its actions, including all the actions in all the 
methods that it operates, are executed simultaneously as one 
composite atomic action.  Thus, the upstream rule can only 
fire if ENQ_READY is true, and then the enqueueing 
becomes part of the overall atomic action of the rule.  When 
the rule fires, the enqueued data is driven and 
ENQ_ENABLE is asserted.

The condition of a method or a rule is necessary, but not 
sufficient, for a rule to fire.  In particular, since rules can 
share resources (such as the FIFO above), simultaneous firing 
might not be possible while maintaining atomicity, i.e., if 
simultaneous firing would lead to inconsistent states.  The 
Bluespec compiler emits scheduling logic to ensure that 
simultaneous firing is only possible if it maintains atomicity.

When compiling a FIFO implementation, the compiler 
performs a systematic analysis that infers whether the enq and 
deq methods can be operated simultaneously safely, and 
under what conditions.  Note, different FIFO designs may or 
may not permit such simultaneous operation.

This interface information is recorded by the compiler with 
the FIFO implementation.  Now, when compiling mkClient,  
the compiler uses this information to introduce suitable 
control logic in mkClient to guarantee that the upstream and 
the downstream rules can fire simultaneously only when 
conditions permit them to do so safely.

It is for these reasons that we say that interface methods are 
Rule-based, i.e., methods are simply parts of rules, and a rule 
can be viewed as a composition of the methods it operates.  In 
particular, the compiler automatically infers all the contract 
requirements (1), (2), (3), (I) and (II) described in Section 2. 
Further, the compiler, by construction, ensures that the design 
meets all the contract requirements wherever the FIFO is 
instantiated, as in mkClient.  It is therefore  impossible for 
mkClient to drive the FIFO into an inconsistent state. 
Similarly, in addition to mkClient the design may contain 
hundreds of other instances of the FIFO module, but in each 
case the compiler ensures that the FIFO's contract is met.

Further, these assurances are transitive, so that mkClient can 
truly be viewed as a black box.  Its interface contract, in turn, 
is automatically inferred by the compiler.  If mkClient is itself 
instantiated repeatedly, the compiler ensures that its contract 
is met in each case.  Thus, we are guaranteed that none of 
them can drive their FIFO instances into inconsistent states, 
no matter what their environments.  In other words, the 
interface contracts for mkClient, in turn, ensure that the 
contracts for the FIFOS are met.

Thus, these properties of Rules and Rule-based interfaces 
dramatically simplify the Verification problem.  A whole host 
of functional errors that are very common in RTL designs—
signaling errors, signal sampling errors, race conditions, and 
so on—almost all of which can be traced to a failure of 
atomicity, are eliminated, by construction, when the behavior 
is expressed in terms of Rules and Rule-based Interfaces.  In 
summary, the benefits are:

• Rule-based interface methods are a higher-level of 
abstraction than raw ports.

• Action, ActionValue and value methods provide a simple 
and common vocabulary and model for module 
interactions and signaling.  Instead of rolling one's own 
signaling protocol for each module, the implementer just 
uses one of these off-the-shelf mechanisms.  Similarly, the 
user of an IP block can instantly understand its signaling 
protocol, if its interface is expressed in these terms.  When 
working with Bluespec,  designers no longer go through 
the tedium of creating and interpreting one-off timing 
diagrams.

• Because of Rules and Rule-based Interfaces, the compiler 
automatically infers the complete signaling and scheduling 
contract exported at the interface of an IP block, and the 
compiler automatically ensures that this contract is met at 
every instance of the IP block, when it generates the 
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module mkClient (...);
   ... instantiate fifo ...

  rule upstream (... cond1 ...);
    ... other actions ...
    fifo.enq (expr1);
  endrule

  rule downstream (... cond2 ...);
    x <- fifo.deq ();
    ... other actions ...
  endrule
endmodule



surrounding contextual code.  Because these assurances 
apply at every level of the module hierarchy, the entire 
system is a more robust edifice built on a strong and stable 
foundation.

This approach enables the designer to rapidly put together 
large systems with complex concurrency.  It eliminates the 
focus on driving all internal blocks to their respective corner 
cases for the purpose of ensuring that they were properly 
instantiated.  Instead, the focus is on the larger and more 
important questions of architecture and features of the system 
as a whole.

Experience and Validation
The ideas presented in this paper have been implemented in 
the Bluespec SystemVerilog system and compiler, and have 
been in use for several years.  Bluespec, its customers and 
university partners have implemented well over a hundred 
designs with this methodology, for both ASIC and FPGA, 
with sizes from few thousand gates to 15M-20M gates.  There 
is now substantial empirical evidence supporting our claims 
of dramatically lower verification effort, higher designer 
productivity, and IP reuse.   There is also substantial evidence 
showing no performance penalty, in area or speed, compared 
to coding in RTL directly, for expressing the design using 
Rules and Rule-based interfaces.

5. Summary and Conclusion
Interface semantics are very weak (practically nonexistent) 
when working with RTL's raw module port lists.  The 
ensuing weakness of compositional semantics is at the root of 
the “verification bottleneck”—as we build larger and more 
complex systems, they become increasingly creaky because 
of the weak “joints” in the system.

With RTL semantics, even with a focused verification effort 
at the IP block level, you’ve only succeeded in establishing 
its correctness under proper use. But, this proper use 
assumption cannot be made upon future instantiation—an IP 
block’s proper behavior is dependant on external logic as 
well as internal logic.  Because so many errors can be 
introduced when blocks are instantiated, the benefit of 
focusing verification at the IP block level gets blunted – and, 
instead shifts primarily to the system level, where verification 
teams must consciously, but indirectly, steer the internals of a 
design into all its potential corner cases. 

Strong formal interface semantics are thus a necessity to 
eliminate the bottleneck.  Assertions are a good step, but have 
their limitations—the work to add assertions is time-
consuming and error-prone, and likely to be incomplete; 
checking assertions adds simulation overhead and can be 
difficult to ensure coverage; and formal verification of 
assertions in all their generality is intractable.

Rule and Rule-based Interfaces provide a powerful, high-
level semantic model for behavior and interaction.  They 
provide a high-level vocabulary and simple mental model for 
people in designing and examining module interfaces. 
Compilers can automatically infer contracts for exported 
module interfaces, and can automatically use this information 
to generate correct usage at module instances.  All this can be 
done with no performance penalty compared to directly 
writing RTL code.  As a result, a major class of errors and 
bugs in large system design is eliminated, by construction.
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