
Abstract
In order to build large complex systems that are robust
(correct), we need a scalable and composable discipline.
Each module's interface should specify a contract between
the implementor and the client—if the client drives the
module in certain legal ways, then the implementor
guarantees that it will behave in certain well-specified ways.
This is an old idea in software engineering, and is now
finding its way into hardware design through assertions (e.g.,
PSL or SVA). However, such a methodology will truly
eliminate the “verification bottleneck” only if such contracts
are both automatically derived from implementations and
automatically enforced at clients, i.e., this is the very essence
of the phrase “correct by construction”. In this paper we
describe how Bluespec SystemVerilog's Rules and Rule-
based Interfaces implement this idea.

1. Introduction
Due to Moore's Law, today's chips are SoCs (Systems on a
Chip), with tens of millions of gates each. The chip
development cost is enormous, thereby demanding larger
markets to recoup costs, but of course there are fewer large
markets. The cost of chip design failure is not merely the
operations and materials expenses of a respin, but the
potentially huge opportunity cost in missing or shrinking an
available market window.

A central factor in chip development costs is the “verification
bottleneck”. Today, roughly 70% of development resources
go into verification. This is obviously the keystone that we
must attack in order to solve the complexity problem.

One approach is to reuse existing or purchased “verified” IP
blocks (Intellectual Property) to avoid designing a system
from scratch. Unfortunately, interfacing to such IP is itself
proving to be a complex and costly problem.

Most of the above difficulties in verification and IP reuse can
be attributed to the lack of any formal methodology in
module composition. One cannot build a large edifice on
creaky joints—the whole structure will be fragile and can
collapse under the slightest unanticipated stress.

We need a systematic, powerful, formal way of specifying
interfaces of modules, i.e., the contract between implementor
and client. It is immediately obvious that interface semantics
must include behavior (signaling and scheduling protocols),
not just structure (types and connectivity). Further, interface

behavior is intimately tied to the behaviors of a module and
its client, and so interface semantics cannot be considered in
isolation—they must integrate organically with module
behavioral semantics.

This idea, that a module's interface must specify a contract
between the implementor and the client, is an old idea in
software engineering [Design By Contract], and is today
finding its way into hardware design in the form of assertions
attached to interfaces [Foster 2004, SynopsysABV 2003] in
languages such as PSL [PSL 2005] and SVA, or
SystemVerilog Assertions [SV 2005].

However, this idea will truly eliminate the “verification
bottleneck” only if it is used constructively, i.e., when the
contract is derived automatically for an implementation and
and used while creating the client code so that, by
construction, it cannot violate the contract. In this way, it
does not run into any of the limitations in the manual
insertion of interface assertions: correctness of the assertions,
completeness of the assertions, simulation speed, and the
need to repeatedly check them at each of possibly hundreds
of instances of a module.

Of course, one cannot expect automatically to infer the full
interface contract for a module—that is an open-ended
problem and is intractable in general. However, Bluespec
SystemVerilog's Rules and Rule-based Interfaces [BSV
2004] capture a tractable and highly useful subset of interface
semantics that can and are indeed used by the Bluespec
synthesis tool in the automated, constructive way just
described. First, they provide the designer with a framework
and vocabulary for thinking about and describing interfaces
that are at a much higher level than the raw port lists found in
RTL (and even in SystemC). Second, they have a formal
semantics that the synthesis tool can capture and represent
explicitly. Third, these formal semantics are used by the tool
when generating code for client modules to guarantee correct
use. Since it captures a subset of interface semantics, it does
not eliminate the verification problem nor the value of some
types of assertions on the interface, but collectively, these
properties eliminate the verification bottleneck by eliminating
most of the common errors found in composing modules in
hardware designs (illegal port use, race conditions,
inconsistent states, wrong signaling, etc.). This frees the
designer to focus on the more important, higher-level
verification issues.

1

Eliminating Verification using Automated Formal Interface Contracts
Rishiyur S. Nikhil [nikhil@bluespec.com]

Bluespec, Inc., 200 West Street, Waltham, MA 02451

February 17, 2006

Organization of this paper
Section 2 is an analysis of current methodology based on
today's RTL (Verilog, SystemVerilog and VHDL, and even
SystemC), illustrating lack of composability and the way it
contributes to the verification bottleneck. Section 3 discusses
some partial solutions, including assertions with PSL or SVA.
Section 4 discusses how Bluespec SystemVerilog's Rules and
Rule-based Interfaces take direct aim at the problem. Finally,
we summarize and conclude in Section 5.

2. Why current methodology based
on RTL leads to the verification
bottleneck
Terminology: in the following discussion, we will frequently
use the term “IP block” (Intellectual Property block) to refer
to a particular module, and the word “client”' to refer to the
environment (the surrounding module) that uses the IP block.

Module interfaces in RTL are merely port lists. When
modules are interconnected, tools merely perform some
rather trivial structural checks, e.g., that all ports are
connected, that ports are connected to signals of the correct
data type/width, etc. VHDL and SystemVerilog have
stronger notions of types and type checking, and have
facilities to separate interface definitions from module
definitions, which alleviate some of the tedium of writing
port lists, but in the final analysis, the only semantic checks
performed by tools are to ensure correct connection of ports
to signals.

The central problem is that interfaces have no semantics of
behavior, other than the low-level semantics of individual
signals. For every module, the designer starts from scratch to
roll his own specification for the behavior across the
interface. For example, when designing a FIFO block, the
designer may decide:

• The logical “enqueue” operation will involve three ports:
an input data bus, an output ENQ_READY signal to
prevent enqueueing into a full FIFO, and an input
ENQ_ENABLE signal by which the client signals that it
is actually enqueueing some data.

• Similarly, the logical “dequeue”' operation will involve
three ports: an output data bus, an output DEQ_READY
signal to prevent dequeuing from an empty FIFO, and an
input DEQ_ENABLE signal by which the client signals
that it is actually dequeuing some data.

• The logical “clear” operation to empty out the FIFO has a
single input CLR_ENABLE signal.

Having decided the ports of the module, the designer will
work on the contract for correct behavior by the client,
involving rules on individual operations such as:

1. ENQ_ENABLE should never be asserted if
ENQ_READY is false (except see rules (I) and (II)
below).

2. DEQ_ENABLE should never be asserted if
DEQ_READY is false.

3. ENQ_ENABLE should be asserted simultaneously with
data being valid on the input data bus

The contract will also have rules involving multiple
operations such as:

I. ENQ_ENABLE can be asserted even if ENQ_READY is
false, if DEQ_ENABLE is asserted simultaneously
(because, even though the FIFO is full, the newly
enqueued datum can be placed in the slot being vacated
by the dequeued datum).

II. If CLR_ENABLE is asserted, then ENQ_ENABLE and
DEQ_ENABLE are ignored (they can be asserted even
though the corresponding READY signals are false).

Such “contract” rules are typically specified informally in
text and waveform diagrams in the data sheet for the FIFO.
They are often incomplete or ambiguously written.
Sometimes they are plain wrong, i.e., the text spec does not
correspond to the actual implementation. In at least one such
FIFO data sheet from a major IP vendor, we found these rules
buried in paragraphs spread over several pages. As seen
above, even for as simple and straightforward a block as a
FIFO, the behavioral contract can be complex; it can get quite
unmanageable for larger blocks or subsystems.

The above activity of the designer is reminiscent of the early
days of computer programming where, for each subroutine,
the programmer carefully designed a protocol about which
arguments were carried in which registers, which arguments
were carried in memory and how they were laid out in
memory, etc. Another programmer who used the subroutine
had to carefully understand this protocol (assuming it was
properly documented), and carefully craft his code
accordingly. It was worse: the subroutine designer's choice
of register usage, in turn, affected the subroutine user's own
register allocation decisions. In other words, if the subroutine
were replaced with a functionally equivalent subroutine with
different argument and register conventions, the subroutine
user may have had to adjust his own code accordingly. In
other words, this (lack of) methodology simply did not
compose, and simply did not scale. Thus, of course, this was
a major source of bugs and fragility limiting reuse. Today,
with high-level languages and compilers, all these issues are
removed from the programmer's concern, are never the
source of bugs, and never need verification. The compiler
systematically produces code that is correct by construction.

The hardware designer using RTL faces the same kind of
problem, today. For each use of every IP block, he must
understand the port protocols assumed by the module
designer (assuming they are fully documented). Since each

2

module's port behavior is designed from scratch by the
module designer, the IP user has to cope with all the different
styles and conventions of different IP designers, i.e.,
understanding each IP block's port behavior is a completely
fresh task. Rules like (I) above affect the control circuitry in
the client module, so that substituting a piece of IP by another
which has the same port list and functionality but a slightly
different contract also requires changes in the client.

This results in a major lack of scalability in Verification. The
designer of module B that uses an IP module A must not only
think about the functionality of B (which is the focus of his
attention), but he must also think about ways in which B
might possibly violate the port behavior contracts of A. He
must devise verification tests to ensure that such violations
never happen. This must happen for every instance of A, e.g.,
if there are a hundred FIFOs in his design, then these
verification checks must be devised and performed separately
on each of those hundred instances. Moreover, for the same
corner case, each instance will need a uniquely designed test
to drive it into that situation.

Needless to say, very few engineers have the patience to
employ such diligence during block and subsystem tests, and
so they often punt the problem to the final “system level”
verification. Unfortunately, once we are at system level, it
becomes even harder to push some deeply embedded IP
block into its corner cases.

The complexity of this verification obligation compounds
itself as we build up from sub-blocks to blocks to subsystems
and systems, i.e., this (lack of) methodology does not
compose well. Thus, verifying an entire system today is a
nightmare, and it is impossible to cover all the corner cases.

To summarize, verification and IP reuse is hard, and
increasingly intractable for large systems, because of the lack
of a good formal semantic model for interface behavior,
resulting in:

• No reusable methodology:

• IP designers start from scratch and roll their own
interface protocols for each module they design. IP
users start from scratch in understanding each IP's
peculiar interface protocols.

• No standard way to document behavior, resulting in
missing, incorrect, incomplete, ambiguous, confusing
or hard-to-locate documentation.

• A complex verification obligation that is repeated at every
instance of every module.

A higher-level formal semantics would, instead, allow each
IP block to be verified thoroughly on its own, and then
guarantee that it cannot be misused in any context. The
emphasis shifts to a thorough verification of a block in
isolation, instead of the verification of its numerous

instantiations in different contexts.

[Note: This analysis is orthogonal to the idea of using “behavioral
synthesis” to automate the process of going from scientific
algorithms to hardware. Such tools are typically restricted to
individual blocks and do not address the composition issues in
building complex systems out of individual blocks. The blocks
generated by behavioral synthesis tools have the same issues of
interfacing and reuse. Indeed, the solution using Rule-based
semantics recommended in this paper could be a suitable target for
the hardware generated by behavioral synthesis tools.]

3. Partial solutions in related work
There are various partial solutions available in some tools and
in the industry.

SystemVerilog allows the designer to define tasks in an
interface. Such a task can represent an entire interface
operation (such as an enqueue or dequeue into a FIFO), and
can encapsulate all the specific port-signaling protocols.
Client modules, instead of directly signaling ports, invoke
these tasks instead. This allows the designer to define the
behavior of transactions on a module in one place, in the
interface [SV 2005] itself. However, these are just layered on
top of port lists, and explained in terms of inlining the tasks
wherever they are called, i.e., they do not introduce any
fundamental new formal model of behavior on the interface.
They are also weak in that if the ports are shared, i.e, the task
is to be called from multiple concurrent processes, then they
do not provide any straightforward way to deal with the
necessary multiplexing and arbitration.

The SPIRIT Consortium [SPIRIT] is attempting to define
standards for IP reuse by using XML-based descriptors of IP
blocks. But, once again, these are just layered on top of
standard RTL and RTL's port lists. It does not introduce any
fundamentally improved formal model of behavior.

SystemC uses the concept of methods from C++ to describe
interfaces as transactions rather than signals. However,
synthesizable SystemC still relies on RTL-like signals for
communicating between modules. But even for modeling
purposes, where we may not be interested in synthesizability,
C++'s methods just give an open-ended mechanism, not a
semantics or methodology. It is hard to see how any tool can
usefully exploit this higher level of abstraction to do any
static verification.

The most promising partial solution is the use of assertions
using PSL [PSL 2005], SystemVerilog Assertions (SVA) [SV
2005], or OVL [AccelleraOVL 2005] at interfaces to express
correctness conditions on the port protocols [Foster 2004,
SynopsysABV 2003]. The idea is to attach immediate and
temporal assertions to interfaces, using one of the above high-
level, declarative, logic-based languages to describe formal
correctness properties of the interactions at the interface.

However, assertions are still only a partial solution for the

3

following reasons:

• The onus remains on the IP block designer or
verification engineer to create necessary and sufficient
assertions to correctly and completely characterize the
port protocol contracts. Achieving this level of
precision is very hard for all but the simplest of blocks.
The designer often finds it hard to translate his intent
into a watertight formal logic statement.

• In the current state of the art, assertions are checked by
simulation. In addition to affecting overall simulation
speed, one still has the difficult problem of designing
testbenches that will drive internal IP blocks into their
corner cases, in order to ensure complete coverage, i.e.,
have all the assertions been exercised sufficiently to
catch all the corner cases?

• In the future, assertions will increasingly be checked
statically, using theorem proving, so that coverage will
be complete and simulation speed is not affected.
However, because assertions are a very powerful
language, progress towards this goal is likely to be slow
and will take many years. Even assuming that these
technologies were available, the (manual) work to add
assertions will always be time-consuming and error-
prone, and likely to be incomplete.

The question is: is there a more limited style and scope
of assertions that is adequate for the job and known to
be more tractable than general-purpose assertions? The
Rule-based semantics advocated below are an answer.

In summary: while there are many partial steps towards
alleviating the verification bottleneck, the lack of a suitable
high-level, compositional, formal behavioral semantics is
hindering progress.

4. Rules and Rule-based Interfaces
address the correctness problem
automatically and scalably
Rule-based systems have a long history in the study of
semantics, parallelism, and concurrency in Computer
Science. There is a rich body of theory on Term Rewriting
Systems [Baader & Nipkow 1998, TRS 2003] which are the
basis of Rules. Rule-based systems have been central to the
study of complex systems in Artificial Intelligence [Winston
1992] and the study of complex parallel programming
[Chandy & Misra 1998]. All this work is focused on
correctness, which is the central objective of verification.

The power of Rules in reasoning about correctness arises
from its property of atomicity [Lynch et.al. 1993]. A rule
can express complex, dynamically determined state
transitions based on complex dynamic conditions.

Nevertheless, atomicity allows the designer to reason about
correctness one rule at a time. For each rule, assuming that
the system starts in a consistent state, we can check if the
rule's state transition leaves the system in a consistent state—
atomicity allows us to not have to worry about any other
concurrent activity. When the correctness of individual rules
is established, the composition of these rules is automatically
correct. This makes it scalable to large, complex systems.

The concept of atomicity was the fundamental breakthrough
in managing complex concurrency in the software field
(operating systems, databases, distributed systems). Bluespec
SystemVerilog [BSV 2004] (BSV) brings the same power to
an HDL (Hardware Design/Description Language). It is this
formal semantic model that allows us to specify concurrent
behavior simply, precisely and formally which, in turn,
enables a scalable methodology to build complex hardware
systems correctly, by construction (i.e., eliminating
significant aspects of the verification task).

Referring to the FIFO example of Section 2, instead of port
lists, BSV defines interfaces using methods, as shown below.

The enq method encapsulates all the ports described in
Section 2: the input data bus (whose width depends on the
particular data type to which the generic type x_t is
instantiated), the output ENQ_READY signal, and the input
ENQ_ENABLE signal. Similarly, the deq method
encapsulates all the ports described in Section 2: the output
data bus, the output DEQ_READY signal and the input
DEQ_ENABLE signal.

In general, method arguments become module input data bus
ports. Method results (such as that returned by deq), become
output data bus ports. A method can have multiple output
data bus ports because return-types can be structs with
multiple fields, and vectors. All methods, in principle, have
an output READY signal. All Action and ActionValue
methods (like those shown), in principle, have input
ENABLE signals. Action and ActionValue methods are
sequential, i.e., they can cause a state change inside the
module. A third kind of method, which we call value
methods, are purely combinational—their results are
combinational functions of their arguments and internal
module state. The compiler may optimize away the implicit
READY and ENABLE signals of a method if it proves that
they are always asserted.

A client module that uses the FIFO contains Rules that

4

interface FIFOBuf#(x_t);
 method Action enq (x_t x);
 method ActionValue#(x_t) deq ();
 methoc Action clear ();
endinterface

operate the enq and deq methods, as in the example below.

Each rule has an explicit condition, depicted above as the
expressions cond1 and cond2. These are pure combinational
boolean expressions. Each rule also contains one or more
actions that can be executed atomically only if the rule
condition is true. For example, the upstream rule contains an
action that enqueues the value of expression expr1 into the
FIFO, and the downstream rule contains an action that
dequeues an item x from the FIFO.

The conditions of all methods operated by a rule are
incorporated into the overall condition of the rule. For
example, the ENQ_READY signal is “AND”ed with cond1
to determine the overall condition of the upstream rule. The
DEQ_READY signal is “AND”ed with cond2 to determine
the overall condition of the downstream rule.

A rule can only fire (execute) if all its conditions permit it.
When it fires, all its actions, including all the actions in all the
methods that it operates, are executed simultaneously as one
composite atomic action. Thus, the upstream rule can only
fire if ENQ_READY is true, and then the enqueueing
becomes part of the overall atomic action of the rule. When
the rule fires, the enqueued data is driven and
ENQ_ENABLE is asserted.

The condition of a method or a rule is necessary, but not
sufficient, for a rule to fire. In particular, since rules can
share resources (such as the FIFO above), simultaneous firing
might not be possible while maintaining atomicity, i.e., if
simultaneous firing would lead to inconsistent states. The
Bluespec compiler emits scheduling logic to ensure that
simultaneous firing is only possible if it maintains atomicity.

When compiling a FIFO implementation, the compiler
performs a systematic analysis that infers whether the enq and
deq methods can be operated simultaneously safely, and
under what conditions. Note, different FIFO designs may or
may not permit such simultaneous operation.

This interface information is recorded by the compiler with
the FIFO implementation. Now, when compiling mkClient,
the compiler uses this information to introduce suitable
control logic in mkClient to guarantee that the upstream and
the downstream rules can fire simultaneously only when
conditions permit them to do so safely.

It is for these reasons that we say that interface methods are
Rule-based, i.e., methods are simply parts of rules, and a rule
can be viewed as a composition of the methods it operates. In
particular, the compiler automatically infers all the contract
requirements (1), (2), (3), (I) and (II) described in Section 2.
Further, the compiler, by construction, ensures that the design
meets all the contract requirements wherever the FIFO is
instantiated, as in mkClient. It is therefore impossible for
mkClient to drive the FIFO into an inconsistent state.
Similarly, in addition to mkClient the design may contain
hundreds of other instances of the FIFO module, but in each
case the compiler ensures that the FIFO's contract is met.

Further, these assurances are transitive, so that mkClient can
truly be viewed as a black box. Its interface contract, in turn,
is automatically inferred by the compiler. If mkClient is itself
instantiated repeatedly, the compiler ensures that its contract
is met in each case. Thus, we are guaranteed that none of
them can drive their FIFO instances into inconsistent states,
no matter what their environments. In other words, the
interface contracts for mkClient, in turn, ensure that the
contracts for the FIFOS are met.

Thus, these properties of Rules and Rule-based interfaces
dramatically simplify the Verification problem. A whole host
of functional errors that are very common in RTL designs—
signaling errors, signal sampling errors, race conditions, and
so on—almost all of which can be traced to a failure of
atomicity, are eliminated, by construction, when the behavior
is expressed in terms of Rules and Rule-based Interfaces. In
summary, the benefits are:

• Rule-based interface methods are a higher-level of
abstraction than raw ports.

• Action, ActionValue and value methods provide a simple
and common vocabulary and model for module
interactions and signaling. Instead of rolling one's own
signaling protocol for each module, the implementer just
uses one of these off-the-shelf mechanisms. Similarly, the
user of an IP block can instantly understand its signaling
protocol, if its interface is expressed in these terms. When
working with Bluespec, designers no longer go through
the tedium of creating and interpreting one-off timing
diagrams.

• Because of Rules and Rule-based Interfaces, the compiler
automatically infers the complete signaling and scheduling
contract exported at the interface of an IP block, and the
compiler automatically ensures that this contract is met at
every instance of the IP block, when it generates the

5

module mkClient (...);
 ... instantiate fifo ...

 rule upstream (... cond1 ...);
 ... other actions ...
 fifo.enq (expr1);
 endrule

 rule downstream (... cond2 ...);
 x <- fifo.deq ();
 ... other actions ...
 endrule
endmodule

surrounding contextual code. Because these assurances
apply at every level of the module hierarchy, the entire
system is a more robust edifice built on a strong and stable
foundation.

This approach enables the designer to rapidly put together
large systems with complex concurrency. It eliminates the
focus on driving all internal blocks to their respective corner
cases for the purpose of ensuring that they were properly
instantiated. Instead, the focus is on the larger and more
important questions of architecture and features of the system
as a whole.

Experience and Validation
The ideas presented in this paper have been implemented in
the Bluespec SystemVerilog system and compiler, and have
been in use for several years. Bluespec, its customers and
university partners have implemented well over a hundred
designs with this methodology, for both ASIC and FPGA,
with sizes from few thousand gates to 15M-20M gates. There
is now substantial empirical evidence supporting our claims
of dramatically lower verification effort, higher designer
productivity, and IP reuse. There is also substantial evidence
showing no performance penalty, in area or speed, compared
to coding in RTL directly, for expressing the design using
Rules and Rule-based interfaces.

5. Summary and Conclusion
Interface semantics are very weak (practically nonexistent)
when working with RTL's raw module port lists. The
ensuing weakness of compositional semantics is at the root of
the “verification bottleneck”—as we build larger and more
complex systems, they become increasingly creaky because
of the weak “joints” in the system.

With RTL semantics, even with a focused verification effort
at the IP block level, you’ve only succeeded in establishing
its correctness under proper use. But, this proper use
assumption cannot be made upon future instantiation—an IP
block’s proper behavior is dependant on external logic as
well as internal logic. Because so many errors can be
introduced when blocks are instantiated, the benefit of
focusing verification at the IP block level gets blunted – and,
instead shifts primarily to the system level, where verification
teams must consciously, but indirectly, steer the internals of a
design into all its potential corner cases.

Strong formal interface semantics are thus a necessity to
eliminate the bottleneck. Assertions are a good step, but have
their limitations—the work to add assertions is time-
consuming and error-prone, and likely to be incomplete;
checking assertions adds simulation overhead and can be
difficult to ensure coverage; and formal verification of
assertions in all their generality is intractable.

Rule and Rule-based Interfaces provide a powerful, high-
level semantic model for behavior and interaction. They
provide a high-level vocabulary and simple mental model for
people in designing and examining module interfaces.
Compilers can automatically infer contracts for exported
module interfaces, and can automatically use this information
to generate correct usage at module instances. All this can be
done with no performance penalty compared to directly
writing RTL code. As a result, a major class of errors and
bugs in large system design is eliminated, by construction.

References
[AccelleraOVL 2005] Open Verification Library (OVL) 1.0,
Accellera, http://www.accellera.org/activities/ovl/, 2005.

[Baader&Nipkow1998] Term Rewriting and All That, F.
Baader and T. Nipkow, Cambridge Univ. Press, 1998, 300pp.

[BSV 2004] Bluespec System Verilog Reference Guide,
www.bluespec.com, 2004-2006

[Chandy&Misra1998] Parallel Program Design: a
Foundation, K. Mani Chandy and J. Misra, Addison Wesley,
1998, 516pp.

[Design By Contract] Design by Contract, Wikipedia,
http://en.wikipedia.org/wiki/Design_by_contract. (See also
Eiffel Software, http://www.eiffel.com)

[Foster 2004] Assertion-Based Design, 2nd Ed., H. D. Foster,
A. C. Krolnik and D. J. Lacey, Springer, 2004, 414 pp.

[Lynch et. al. 1993] Atomic Transactions: In Concurrent and
Distributed Systems, N. A.Lynch, M. Merritt, W. E. Weihl
and A. Fekete, Morgan Kaufman Series in Data Management
Systems, 1993, 476 pp.

[PSL 2005] PSL—Property Specification Language, IEEE
Std 1850, http://standards.ieee.org, September 2005

[SPIRIT] The SPIRIT Consortium for industry level
cooperation in developing standards for IP description,
http://www.spiritconsortium.org

[SV 2005] SystemVerilog—Unified Hardware Design,
Specification, and Verification Language, IEEE Std 1800-
2005, http://standards.ieee.org, November, 2005

[SynopsysABV 2003] Assertion-Based Verification,
Synopsys, Inc., http://www.synopsys.com/products/
simulation/assertion_based_wp.pdf, March 2003, 14 pp.

[TRS2003] Term Rewriting Systems, Terese, Cambridge
Tracts in Theoretical Computer Science, Cambridge
University Press, 2003, 884 pp.

[Winston1992] Artificial Intelligence, Third Edition, P. H.
Winston, Addison Wesley, 1992, 691pp.

6

http://www.accellera.org/activities/ovl/
http://www.synopsys.com/products/
http://standards.ieee.org/
http://www.spiritconsortium.org/
http://standards.ieee.org/
http://www.eiffel.com/
http://en.wikipedia.org/wiki/Design_by_contract
http://www.bluespec.com/

	1. Introduction
	Organization of this paper

	2. Why current methodology based on RTL leads to the verification bottleneck
	3. Partial solutions in related work
	4. Rules and Rule-based Interfaces address the correctness problem automatically and scalably
	Experience and Validation

	5. Summary and Conclusion
	References

