Towards Manufacturability Closure: Process Variations and Layout Design

J. Andres Torres

LFD Technical Lead Mentor Graphics

Neil C. Berglund

Portland State University Northwest Technology group

Outline

- Problem definition
- Pattern-centric DFM framework review,
 - Objects, Operators, Guidelines
- Manufacturability Closure for a 130nm library cell
- Electrical response of traditional and optimized cell
- Conclusions and future work

Sub-Wavelength Gap?

Source: Berglund , Northwest Technology Group. and PDF Solutions

While there are more effects that drive pattern transfer imperfections. Lithography is believed to be one of the main contributors.

Pattern Centric DFM framework

- **Composed by:**
 - Objects: Layout and pv-Bands
 - Operators: Booleans and distance checks
 - Guidelines: Process Based Design rules and Manufacturability Indices.

Object: pv-Band

pv-Band definition

AT, EDPS 2005

Operators

Operator	Description
PVBAND(Layer)	Calculates the process variability band of Layer, and creates a pvBand object.
$E2I(pvBand_i, pvBand_j)$	Measures the distance between the external $pvBand_i$ edge and the internal $pvBand_j$ edge and creates a marker layer that completely encloses the selected region.
$E2E(pvBand_i, pvBand_j)$	Measures the distance between the external $pvBand_i$ edge and the external $pvBand_j$ edge and creates a marker layer that completely encloses the selected region.
I2I($pvBand_i$, $pvBand_j$)	Measures the distance between the internal $pvBand_i$ edge and the internal $pvBand_j$ edge and creates a marker layer that completely encloses the selected region.
$OR(Object_iObject_j)$	Boolean operation that adds all the contents of $Object_i$ through $Object_j$ creating a derived layer. <i>Object</i> can be an original or derived <i>Layer</i> or <i>pvBand</i> .
$AND(Object_iObject_j)$	Boolean operation that adds the common contents of $Object_i$ through $Object_j$ creating a derived layer. <i>Object</i> can be an original or derived <i>Layer</i> or <i>pvBand</i> .
$NOT(Object_i, Object_j)$	Boolean operation that discounts the common contents of $Object_i$ and $Object_j$ from $Object_i$ creating a derived layer. $Object$ can be an original or derived Layer or $pvBand$.
AREA(Object)	Calculates the area of the <i>Object</i> . <i>Object</i> can be an original or derived <i>Layer</i> or <i>pvBand</i> .

Graphics 7 AT, EDPS 2005

Guidelines: Design rules

Pseudo-expressions for design rules

$$aoc_{Violation} = OR \begin{pmatrix} AND((pvBand(contact), pvBand(active))), \\ E2I(pvBand(contact), pvBand(active)) \le aoc_{min} \end{pmatrix}$$

$$cw_{Violation} = OR \begin{pmatrix} AND((pvBand(contact))), \\ I2I(pvBand(contact))) \le cw_{min} \end{pmatrix}$$

$$gcs_{Violation} = OR \begin{pmatrix} AND((pvBand(poly), pvBand(contact))), \\ E2E(pvBand(poly), pvBand(contact))) \le gcs_{min} \end{pmatrix}$$

$$goa_{Violation} = OR \begin{pmatrix} AND((pvBand(poly), pvBand(contact))), \\ E2I(pvBand(contact)), endCap), \\ E2I(pvBand(active), pvBand(poly)) \le ga_{min} \end{pmatrix}$$

$$gw_{Violation} = OR \begin{pmatrix} AND((pvBand(poly)), pvBand(contact))) \le gcs_{min} \end{pmatrix}$$

$$pas_{Violation} = OR \begin{pmatrix} AND((pvBand(poly)), pvBand(contact)) \le gcs_{min} \end{pmatrix}$$

$$pas_{Violation} = OR \begin{pmatrix} AND((pvBand(poly)), pvBand(contact)) \le gcs_{min} \end{pmatrix}$$

$$pas_{Violation} = OR \begin{pmatrix} AND((pvBand(poly)), pvBand(poly)) \le ga_{min} \end{pmatrix}$$

$$pas_{Violation} = OR \begin{pmatrix} AND((pvBand(poly)), pvBand(poly)) \le ga_{min} \end{pmatrix}$$

$$poc_{Violation} = OR \begin{pmatrix} AND((pvBand(contact), pvBand(poly))), \\ E2I(pvBand(contact), pvBand(poly)) \le poc_{min} \end{pmatrix}$$

Guidelines: Manufacturability Indices

Process Manufacturability Index:

• Best used by Fab: Helps determine best process conditions.

$$PMI = \sum_{layer} \frac{AREA(pvBand(layer))}{AREA(layer)} + \sum_{layer_i, layer_j} \frac{AREA(AND(pvBand(layer_i), pvBand(layer_j)))}{AREA(AND(layer_i, layer_j))}$$

Design Manufacturability Index:

• Best used by design teams. Helps to identify sensitive topologies.

$$DMI = \sum \frac{AREA(DesignRuleViolations)}{AREA(SupportLayer)}$$

Manufacturability Closure

Pattern-transfer manufacturability can be measured. Therefore, manufacturability targets can be set.

Regime I. Desirable: The process is stable and the design is manufacturable $PMI \rightarrow PMI_{min}$ DMI = 0	Regime III. Process limited: The process is unstable but the design is manufacturable $PMI >> PMI_{min}$ DMI = 0
D m = 0	
Regime II. Design limited: The process is stable and the design is not manufacturable	Regime IV. Undesirable: The process is unstable and the design is not manufacturable
$PMI \rightarrow PMI_{\min}$	$PMI >> PMI_{min}$
DMI > 0	DMI > 0

130nm Example

For this 90nm example only a subset of single layer violations are considered

$$pinch_{Violation} = OR \begin{pmatrix} AND(pvBand(layer)), \\ I2I(pvBand(layer)) \le pinch_{min} \end{pmatrix}$$
$$bridge_{Violation} = OR \begin{pmatrix} AND(pvBand(layer)), \\ E2E(pvBand(layer)) \le bridge_{min} \end{pmatrix}$$

Where, $pinch_{min} = 45$ nm, $bridge_{min} = 45$ nm

T. EDPS 2005

The support region needed to calculate DMI was the layer itself. The process variations are limited to dose and defocus lithographic effects. The dose margins were varied from +/-5% to +/-20%, while the defocus variations were modified from +/-50nm to +/-150nm.

Synthesis

Initial cell using current layout synthesis methods.

Initial Error and Index Calculation

Critical Errors

- 1) Non resolving contacts
- 2) Poly silicon pinching
- 3) Poly to active spacing
- 4) Printing assist feature in metal

Layer	PMI	DMI
POLY	0.384	0.008
CONTACT	0.879	0.294
METAL1	0.230	0.004

(a) DOF = 400nm, EL = 40%, Simple OPC.

AT, EDPS 2005

Increase Metal width and remove large poly blocks

Critical Errors: None

Layer	PMI	DMI
POLY	0.384	0.008
CONTACT	0.879	0.294
METAL1	0.230	0.004

Layer	PMI	DMI
POLY	0.374	0.007
CONTACT	0.856	0.000
METAL1	0.246	0.004

(a) DOF = 400nm, EL = 40%, Simple OPC.

Evaluate: Widen Metal, Contact Enclosure & Line-end extension

Critical Errors: None

Layer	PMI	DMI
POLY	0.384	0.008
CONTACT	0.879	0.294
METAL1	0.230	0.004

Layer	PMI	DMI
POLY	0.379	0.007
CONTACT	0.862	0.000
METAL1	0.221	0.004

(a) DOF = 400nm, EL = 40%, Simple OPC.

Multiple arrangements can be evaluated. Such as evaluating recommended design rules.

Quantifying the final results: Poly

T EDPS 2005

1000

Quantifying the final results: Contacts

Contact layers have a more abrupt behavior since a contact is either closed or open with little room in between. For that reason the sudden jump in the index.

AT, EDPS 2005

Electrical Impact: Test Vector

Transition. From: A=0, B=1, C=0To: A=1, B=0, C=1

Parametric benefit

The Final Layout pattern is more robust to Process Window variations Which translates to better Parametric Behavior

Conclusions and Future Work

- Defining manufacturability based on process variability response allows the definition of a real number which could drive manufacturability closure requirements.
- RET's are implicitly accounted for since their effect is observed. Thus allowing the present method to be used in conjunction with any RET.
 - A full IC-DFM framework should address parametric and random process components, and it remains to be fully defined.

