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The presentation reviews results from some recent optimality studies and recent progress in the UCLA
mPL placer.

1 Placement Examples with Known Optima (PEKO)

Recently, the PEKO studies have given evidence of how far computed placement solutions are from optimal
and how much the deviation from optimality is likely to grow with respect to problem size. The original
PEKO examples have all cells of equal size. Each PEKO is constructed to match the net-degree distribution
of a given benchmark exactly, but with all nets defined to support a placement in which each net is purely
local and has the minimum possible half-perimeter wirelength.

Four state-of-the-art placers from academia including Dragon [12], Capo [3], mPL [4], mPG [6], and one
industrial placer, QPlace [2] were compared on PEKO. Overall, their computed wirelengths were 1.59 to 2.40
times the optimal in the worst cases and are 1.43 to 2.12 times the optimal on average. As for scalability,
the average solution quality of each tool deteriorates by an additional 9% to 17% when the problem size
increases by a factor of 10.

The PEKO studies present strong evidence that the quality gap between globally optimal and computed
solutions remains large. Although recent work suggests that the gap is shrinking fast on the smaller bench-
marks (104 ≤ N ≤ 105), with specialized approaches [11, 13] achieving quality ratios as low as 10%, the
gap remains large on larger test cases. Internal unpublished studies show that simple perturbations of the
PEKO test cases, e.g., aggregating large sets of standard cells into large macro blocks, create cases for which
the quality gap may exceed 8×.

In addition to quantifying suboptimality, these benchmarks provide clues useful in targeting algorithm
weaknesses. Recent work by Ono and Madden [11] examines placements computed by existing tools on
PEKO and shows that displacements of cells from known optimal locations may all be small, even when
corresponding total wirelength is more than 30% longer than optimal. While this result might be seen as
indicating a need for improved algorithms for detailed placement, we will show displacements whose global
regularity suggests otherwise.

2 Progress in UCLA mPL5

The mPL5 framework [5] makes several improvements to the Kraftwerk framework for generic force-directed
placement [7] and embeds this improved engine in a multilevel-optimization flow. A bounding-box weighted
half-perimeter wirelength objective is approximated by the log-sum-exp model [10, 9], in which W (x,y) =

γ
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(
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∑
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∑
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,

where x and y denote vectors of cell x- and y-coordinates. The smaller the parameter γ, the more accurate
the approximation. For simplicity, restrict attention to area density constraints only. These are explicitly
imposed separately in each rectangular bin of a uniform grid laid over the placement region. Let dj denote
the cell-area density of bin Bj and let K denote total cell area divided by the total placement area. The
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area-density constraints are initially expressed simply as Dj = K over all bins Bj . Viewing the Dj as a
discretization of a continuous density function d(x, y) defined at points (x, y) ∈ R, these constraints are
smoothed by approximating d by the solution ψ to the Helmholtz equation

{

∆ψ(x, y)− εψ(x, y) = d(x, y), (x, y) ∈ R
∂ψ
∂ν

= 0, (x, y) ∈ ∂R
(1)

where ε > 0, ν is the outer unit normal, ∂R is the boundary of the placement region R, d(x, y) is the

continuous density function at a point (x, y) ∈ R, and ∆ is the Laplacian operator ∆ ≡ ∂2

∂x2 + ∂2

∂y2 . The

smoothing operator ∆−1
ε d(x, y) defined by solving (1) is well defined, because (1) has a unique solution for

any ε > 0. As the solution of (1) has two more derivatives [8, e.g.] than d(x, y), ψ is a smoothed version
of d. Discretized versions of (1) can be solved rapidly by fast numerical multilevel methods. Recasting the
density constraints as a discretization of ψ gives the nonlinear programming problem

min W (x,y) s.t. ψj = −K/ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where the ψj are obtained by solving (1) with the discretization defined by the given bin grid. Interpolation
from the adjacent coarser level defines a starting point. This nonlinear-programming problem is solved by
the Uzawa iterative algorithm [1], which does not require second derivatives or large linear-system solves.

Experiments indicate that mPL5’s results are extremely competitive in both total wirelength and speed
and scalability.

References

[1] K. Arrow, L. Huriwicz, and H. Uzawa. Studies in Nonlinear Programming. Stanford University Press, Stanford,
CA, 1958.

[2] Cadence Design Systems Inc. Envisia ultra placer reference. In http://www.cadence.com, QPlace version 5.1.55,
compiled on 10/25/1999.

[3] A.E. Caldwell, A.B. Kahng, and I.L. Markov. Can recursive bisection produce routable placements? In Proc.
37th IEEE/ACM Design Automation Conf., pages 477–482, 2000.

[4] T.F. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization for large-scale circuit placement. In Proc.
IEEE International Conference on Computer Aided Design, pages 171–176, San Jose, CA, Nov 2000.

[5] T.F. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit placement. In Proc.
Int’l Symp. on Phys. Design, 2005.

[6] C.C. Chang, J. Cong, Z. Pan, and X. Yuan. Physical hierarchy generation with routing congestion control. In
Proc. ACM International Symposium on Physical Design, pages 36–41, San Diego, CA, Apr 2002.

[7] H. Eisenmann and F.M. Johannes. Generic global placement and floorplanning. In Proc. 35th ACM/IEEE
Design Automation Conference, pages 269–274, 1998.

[8] L. C. Evans. Partial Diferential Equations. American Mathematical Society, 2002.

[9] A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. In Proc. Int’l Symp. on Phys.
Design, pages 18–25, 2004.

[10] W. Naylor et al. Nonlinear optimization system and method for wire length and delay optimization for an
automatic electric circuit placer, Oct. 2001.

[11] S. Ono and P.H. Madden. On structure and suboptimality in placement. In Asia South Pacific Design Automation
Conf., Jan 2005.

[12] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000: Standard-cell placement tool for large industry circuits.
In Proc. International Conference on Computer-Aided Design, pages 260–264, 2000.

[13] Q. Wang, D. Jariwala, and J. Lillis. A study of tighter lower bounds in LP relaxation based placement. In Proc.
Great Lakes Symposium on VLSI, Chicago, IL, Apr 2005.


