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Circuit Placement Problem Statement

[ Al

A netlist

¢ Given

= A set of cells ( modules ) of fixed dimensions and
the interconnections between them — a netlist

+ Find

= The position of each cell, such that
* no overlap ( and enough routing space )
* minimize total length of all interconnections
* minimize routing congestion, delay, ...
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Popular Placement Methods

¢ lterative improvement (Timberwolf, iTools)
= Repeatedly rearrange small subsets of modules
» E.g. Simulated annealing

+ Min-cut based placement (Capo, Feng-Shui)

= Recursively bi-partition modules in a way that minimize
connections between partition blocks

+ Quadratic placement with recursive legalization (Gordian,
BonnPlace, FastPlace, Kraftwerk, ...)

= |nitial solution by unconstrained quadratic wirelength
minimization
= Gradually spread cells out to remove overlap

+ Multiscale (Ultra-fast VPR, mPL, Dragon, ...)
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Optimality and Scalability Study--- Related Work

¢ Quantified Suboptimality of VLSI Layout Heuristics
[L. Hagen et al, 1995]

m Construct scaled instance with
known upperbound

m  Over 10% area suboptimality in
TimberWolf

m  Notable wirelength suboptimality in
GORDIAN-L

m But test cases are small, the
largest netlist is less than 40K

4/21/2005 UCLA VLSICAD LAB 7



Construction of Placement Examples with
Known Optimal Wirelength (PEKO Examples)

+ Ildea: construct synthetic benchmarks matching netlist
characteristics of industrial benchmarks

¢ Input

= Desired number of placeable modules ¢

= Net Distribution Vector (NDV) D =( d,, d, ... d, ), dy is the # of k-pin
nets in the circuit,

= {and D are extracted from a real circuit

< Output
= Cell library L
= Netlist N with known optimal wirelength

¢ Constraint

= Nhas D as its NDV
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Placement Examples with Known Optimal
Wirelength [Chang et al, 2003]

¢ All the modules are of equal size,
| and there is no space between
1N
»

L rows and adjacent modules

| [ ¢ For 2-pin nets , connect any two

7 Al i
r,l/" FIA-\ I adjacent moqlules

; ¢ For each n-pin net, connect the n
modules in a rectangular region close

to a square, i.e., the length of each side
is close to sqrt(n)

¢ The wirelength is of each n-pin net is
— ] : given by {\/ﬂﬂn/{\/ﬁﬂ—z

+ Net degree distributions extracted from
I I I real industrial benchmarks
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PEKO Characteristics

PEKO Suitel ( 12.5k - 210k )

PEKO Suite2 ( 125k - 2.1M )

ckt #cell  #net | #row Optimal WL ckt #cell #net | #row Optimal WL
PekoO1 12506 13865 | 113 @ 8.14E+05 PekoO1x10 125060 | 138650 335 @ 8.14E+06
Peko02 19342 | 19325 | 140 | 1.26E+06 Peko02x10 193420 193250 | 441 1.26E+07
Peko03 22853 | 27118 | 152 | 1.50E+06 Peko03x10 228530 | 271180 479 @ 1.50E+07
Peko04 27220 31683 | 166 @ 1.75E+06 Peko04x10 272200 316830 | 523 | 1.75E+07
Peko05 28146 | 27777 | 169 | 1.91E+06 Peko05x10 281460 | 277770 532 @ 1.91E+07
Peko06 32332 34660 | 181 @ 2.06E+06 Peko06x10 323320 346600 | 570 | 2.06E+07
Peko07 45639 | 47830 | 215 | 2.88E+06 Peko07x10 456390 478300 | 677 | 2.88E+07
Peko08 51023 50227 | 227 @ 3.14E+06 Peko08x10 510230 502270 | 715 | 3.14E+07
Peko09 53110 | 60617 | 231 | 3.64E+06 Peko09x10 531100 606170 | 730 | 3.64E+07
Peko10 68685 74452 | 263 @ 4.73E+06 Peko10x10 686850 744520 | 830 | 4.73E+07
Peko11 70152 81048 | 266 @ 4.71E+06 Peko11x10 701520 | 810480 839 @ 4.71E+07
Peko12 70439 76603 | 266 @ 5.00E+06 Peko12x10 704390 | 766030 840 A 5.00E+07
Peko13 83709 | 99176 | 290 | 5.87E+06 Peko13x10 837090 991760 | 916 | 5.87E+07
Peko14 147088 | 152255 | 385 | 9.01E+06 Peko14x10 1470880 1522550 1214 | 9.01E+07
Peko15 161187 | 186225 402 @ 1.15E+07 Peko15x10 1611870 1862250 1271 | 1.15E+08
Peko16 182980 189544 | 429 @ 1.25E+07 Peko16x10 1829800 | 1895440 1354  1.25E+08
Peko17 184752 | 188838 431  1.34E+07 Peko17x10 1847520 | 1888380 1360  1.34E+08
Peko18 210341 | 201648 460 @ 1.32E+07 Peko18x10 2103410 2016480 1451 | 1.32E+08
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Studied Four State-of-the-Art Placers

¢ Capo [A. Caldwell et al, 2000]

= Based on multilevel partitioner
= Aims to enhance the routability

+ Dragon [M. Wang et al, 2000]

= Uses hMetis for initial partition
= SA with bin-based swapping

¢ mPL [T. Chan et al, 2000]

= Multilevel placer using NLP on the coarsest level
= Goto based relaxation

+ QPlace [Cadence Inc.]

= Leading edge industrial placer

= Component of Silicon Ensemble
4/21/2005 UCLA VLSICAD LAB
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Experiment Results on PEKO, July 2004
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+ Existing algorithms are 30-153% away from the optimal on PEKO

= There is significant room for improvement in placement algorithms!

+ ROI can be huge — 30% wirelength reduction is equivalent to
= Move from aluminum to copper, or

= One process generation shrink
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Experiment with State-of-the-Art Placers Using
PEKO Suite1 & Suite2 (July 2004)
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¢ Capo, QPlace and mPL scales well in runtime

+ Average solution quality of each tool shows deterioration by an additional 4% to
25% when the problem size increases by a factor of 10

¢ QoR of the existing placement algorithms can be 40% - 160% away from the optimal

for large designs
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Limitations of the PEKO Examples

+ Optimal solution includes local nets only

= Unlikely for real designs

+ Measure wirelength only

* Timing and routability are important objectives for placement
algorithms as well
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Impact of Global Connections in Real Examples

circuit height width WL of WL contribution
longest net | of longest 10 % I
ibm01 8158 4530 7148 51%
ibm02 8158 @ 6430 14224 46 %
ibm03 8158 6740 10624 58 % L]
ibm04 8158 9140 15171 53%
ibm0S 8158 11055 19064 47 %
ibm06 8158 @ 8715 13966 61 %
ibm07 8158 14605 14051 51%
ibm08 8158 15895 16142 60 %
ibm09 8158 16395 13780 55 %
ibml10 8158 27890 30755 53% ]
ibml1 16350 10925 19234 59 %
ibml12 16350 15545 26748 52 %
ibml3 16350 12230 19539 59 %
ibml4 16350 25475 26370 61%
ibmlS 16350 23785 27284 63 %
ibml6 16350 34015 42860 59 %
ibml7 16283 38895 45686 56 %
ibml8 16350 37065 52846 64 %
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ISPD98

The wirelength
contribution from global
connections can be
significant!

Need to consider the
impact of global
connections
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Placement Examples with Known Upperbounds
(PEKU)

mGenerate nets with optimal
wirelength as in Peko

mAdd random connections
with emulate global nets
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PEKU Suite

% non-
local
hets

0.25%

0.50%

Up to
10%

circuit

PekuO1
Peku05
Peku10
Peku15
Peku18
PekuO1
Peku05
Peku10
Peku15
Peku18
PekuO1
Peku05
Peku10
Peku15
Peku18

#cell

12506
28146
68685
161187
210341
12506
28146
68685
161187
210341
12506
28146
68685
161187
210341

#net

14111
28446
75196
186608
201920
14111
28446
75196
186608
201920
14111
28446
75196
186608
201920

Row
#row utilizatio
n

113 85%
169 85%
263 85%
402 85%
460 85%
113 85%
169 85%
263 85%
402 85%
460 85%
113 85%
169 85%
263 85%
402 85%
460 85%

LB

8.14E+05
1.91E+06
4.73E+06
1.15E+07
1.32E+07
8.14E+05
1.91E+06
4.73E+06
1.15E+07
1.32E+07
8.14E+05
1.91E+06
4.73E+06
1.15E+07
1.32E+07

UB

8.14E+05
1.91E+06
4.73E+06
1.15E+07
1.32E+07
9.23E+05
2.24E+06
6.17E+06
1.71E+07
2.01E+07
1.02E+06
2.63E+06
7.52E+06
2.30E+07
2.75E+07
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URL: http://cadlab.cs.ucla.edu/~pubbench/peku.htm
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Experiment Results on PEKU, July 2004
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+ Absolute value of the QRs may not be meaningful, but it helps to identify the
technique that works best under each scenario

+ No existing placer can consistently produce the best quality
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PEKO-DP Detailed Placement Example Construction

m Start from existing Peko
examples [Chang et al,
ASPDAC 03]

m Define a bin grid of user-
specified size

4/21/2005 UCLA VLSICAD LAB 19



PEKO-DP Detailed Placement Example Construction

m Start from existing Peko
examples [Chang et al,
ASPDAC 03]

m Define a bin grid a user-
specified size

m Snap cells to bin centers

4/21/2005 UCLA VLSICAD LAB 20



Experiment Results on PEKO-DP, July 2004
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+Penalizing displacement from the global placement
can consistently produce solutions close to the
optimal given reasonably small bins

+QoR still degrades with the increase of bin size
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Displacement maps for mPL4 sol’'n on PEKO

# ofseps from optimal locaton: # ofskps fiom optimal location:
0 <= steps <= 2 B543(E2% Y 2 < steps <= 4: 3514 £30%) O <= steps <= 2 5497 (43%) 2 < stepm <= 4: 4241 (33%)
4 ¢ stepm <= B0 1924 (15%) 8 « stepm <= 16 225 (1%} 4 < steps <= B 12468 (19%) & < stepm <= 16300 (2%)

steps » 16 000%), Largest steps = 15 steps = 16 000% ) Langest steps = 14

After Global Placement After Detailed Placement

Localized moves may not be enough to correct large errors

4/21/2005 UCLA VLSICAD LAB
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In Preparation: PEKO-MS (Mixed-Size PEKQO)

Center-to-center HPWL = 1029536.

Pin-to-pin HPWL = 264944,

O OO om0 moom OO0 OO O 0 OO O 0 0010 00 00 ool

As of March 2005, the
best result of mPL5
on this benchmark is
still over 6X greater
than optimal (in pin-
to-pin half-perimeter
wirelength)!

ERE e e e e e e e T e P e PP
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Observations from Gap Analysis

+ Significant opportunity in placement

= Existing algorithms may produce solutions far away from the
optimal

* The quality result of the same placer varies for circuits of
similar size but different characteristic

= Scalability problem in runtime and solution quality

+ Significant ROI

= Benefit equal to one to two generations of process scaling
= But without requiring multi-billion dollar investment (we hope!)
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Problem size decreases

Multilevel Optimization Framework

Given problem

Interpolation &

Coarsening
Relaxation (optimization)

V¥ (Clustering)

* Multilevel coarsening generates smaller problem sizes at coarser levels 2>
faster optimization at coarser levels
* May explore different aspects of the solution space at different levels
* Gradual refinement on good solutions from coarser levels is very efficient
* Successful in many applications
*Originally developed for PDEs
*Recent success in VLSI CAD: partitioning, placement, routing
4/21/2005 UCLA VLSICAD LAB 26



Multilevel Placement
o build a hierarchy of problem approximations by
generalized clustering

& iImprove the placement at each level by iterative
optimization

o transfer coarse-level solution to adjacent, finer
level (generalized declustering)

& multiple traversals over multiple hierarchies
(V-cycle variations)

4/21/2005 UCLA VLSICAD LAB 27



Multilevel Methods: Coarsening by Recursive
Aggregation
+ Recursive aggregation defines the hierarchy.

+ Different aggregation algorithms can be used on different
levels and/or in different V-cycles.

+ Example: First-Choice Clustering (hMetis [Karypis 1999]).

o ) Merged Nets
Merge each vertex with its ““best” neighbor

4/21/2005 UCLA VLSICAD LAB 28



Multilevel Methods: Interpolation
(Generalized Declustering)
e Transfer a partial solution from a coarser level to its adjacent
finer level

+ Example: place a component ( ¥ ) at the weighted average of
the positions of the clusters containing its neighbors

Place representative

components u

s Q I
—>

DN '

Place others by weighted interpolation
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Iterated Multilevel Flow

Make use of placement
solution from 1% V-cycle

<>,
First Choice (FC)

> clustering <>

QR @,

Geometric based
> FC clustering

@ A

4/21/2005 UCLA VLSICAD LAB
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Iterated Multilevel Flow

Iterated V-Cycles F-Cycle

VIV AV

Backtracking V-Cycle
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Relative A Brief History of mPL
4 Wirelength

Apoo] PL L1 UNIFORM

* FC-Clustering

 added partitioning to legalization CELL SIZE

mPL 2.0

* RDFL relaxation
e primal-dual netlist pruning

e Recursive ESC clus
e NLP at coarsest level
e Goto discrete relaxation
* Slot Assignment legalization
* Domino detailed placement

mPL 3.0 [ICCAD

* QRS relaxation

NON-UNIFORM. amc interpolation
CELL SIZE * multiple V-cycles

e cell-area fragmentation

mPL 4.0
* improved DP

* better coarsening

| | | | |
>
| | | | |
2000 2001 2002 2003 2004 Yeag
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Kraftwerk Framework for Force-Directed Placement
[Eisenmann and Johannes 98]

e . 1
¢ Minimize quadratic wirelength E’UTA”U +rlv, v= (2, vy).

+ Incorporate density-gradient forces
(f,) acting on cells into the optimality
condition: Avpy1 = —7r+ fp

+ Assume forces are zero at infinity.

¢ |teratively update v, and f,.

Compute f;. as fr. = V¢, where

BE 02
Ap = 2¢ + ¢ = d(vg),

Cell density is a continuous
but NON-SMOOTH function
of position

d(vy) is the density function for placement v,

+ Key limitation: extensive tuning
required for proper force scaling.
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mPL5 Generalized Force-Directed Placement

+Smooth the density constraints by solving a Poisson Equation:
min W(v)

s.t. o(v) = K,
where o(v) = A~ Ld(v), k = A~ 1le

+Assume Neumann boundary conditions: forces pointing outside
the chip boundary are zero.

+Log-sum-exp smooth approximation to half-perimeter wirelength
[Naylor 2001; Kahng and Wang 2004]:

W=7 ¥ (109 X exp(ar/)+10g 3 exp(-s/7)

nets e nodes v, €e v e
+ 109 > exp(yr/v) +109 > exp(—yr/7)
vpE€e vEe
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mPL5 Nonlinear-Programing Solution

+ Using the Uzawa algorithm to solve the above nonlinear constrained
minimization problem, we iteratively solve

VW (vgpg1) = M- Vo(ug) = A fi
Met1 = A — a(P(vg) — K))

+ No matrix storage and no second derivatives are computed.

+ Use multilevel approach to speed-up computation and better quality
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mPL5 Framework

Level 3 -©-mmmm e o Y ®
o\ Ve

Level2 ——— (oo L — e — @

Level ]l @ P

® | evel at which GFD is applied
C Coasening
I Interpolation

Keep coarsening until # cells less than 500
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mPL5 VS other state-of-the-art-placers on FastPlace
IBM Standard Cell Placement Benchmarks (March 20095)

13

12 B 12.38

11 -
Q 10 ¢Capo9.0
.E 9 - ® Dragon3.01
S > AFastPlacel.0
_; 65 Fengshui5.0
QL 4 X mPL5
© 09,2.
S g | 106,2.03 10.9’229 ® mPL5-fast

1 X 1 1.07,0.

0 \ 1039 4108,0.18

0.95 1 1.05 1.1

Scaled wirelength
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Scalability plot of mPL5-fast VS FastPlace1.0 on
FastPlace IBM Benchmarks

800 |
g 600 y = 0.0001x"%*"
.5 (mPL5-fast)
§ 400 =

= SE-06 1.4995
m 200 Y (FastPlace)1(.0)
0 \
0 50000 100000 150000 200000

#Cells

¢ FastPlacel.0 ® mPL5-fast

4/21/2005

mPLS5-fast is slightly more scalable than FastPlacel.(
UCLA VLSICAD LAB

38



mPLS$ VS Capo 9.0 and Fengshui 5.0 on ICCAD 2004
IBM Mixed-Size Placement Benchmarks

1.2 |
1 ® B 123097
E os
= ¢ mPL5
& 1
0.6 1.10, 0.62
% ® Capo 9.0
A 0.4 Fengshui 5.0
0.2
0 | | |
0.95 1.05 1.15 1.25

Scaled Wirelength
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Placement Plot of Placers on IBM02

Center-tocener HPWL = 4705363, Center-torcenkr HP'WL= 5110913, Center-torcener HPWL = 5439534,

Fin-b-pin HF'WL = 4525567, Fin-b-pin HP'YWL= 51145879, Fin-b-pin HPWL = 5408725,

| 2 .
| R L
mPL5 Fengshui 5.0 Capo 9.0

Rel. WL =1.00 Rel. WL =1.11 Rel. WL =1.17
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Placement Plot of Placers on IBM10

Center-to-center HPWL = 28961908.

Pin-to-pin HPWL = 28721684,

Center-to-center HPWL = 32680859.

Pin-to-pin HPWL = 33044276.

Center-to-center HPWL = 36997623.

Pin-to-pin HPWL = 36705667,

m<

[— = | %_=
!

[=| ]
f 4N
0 # =

F_"w;

mPLS
Rel. WL =1.00
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Fengshui 5.0
Rel. WL = 1.15

UCLA VLSICAD LAB

Capo 9.0
Rel. WL = 1.28
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Concluding Remarks

+ There is still significant opportunity to improve placement
technologies.

+ mPLS5 achieves improvement by incorporating PDE-
constrained nonlinear programming into a multilevel
framework.

Multiscale Optimization Framework
*Generic Force-Directed Formulation

Multiscale Nonlinear-Programming Algorithm
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