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Corner-based vs. statistical analysis

Ellipse or square?

[Cain/Friedberg, UC Berkeley]

Probability of being here 
is remote

vs.
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Statistical static timing analysis

Intra-die variations in addition to inter-die variations
Deterministic timing analysis       Statistical timing analysis
Path-based analysis: find variability along a single path

Block-based analysis: Find the distribution (PDF/CDF) of:
Dmax = max(D1, D2, … , Dnpaths)

Di: distribution of ith path delay

Dnpath

D1

D2… …PI

PO

max(D1,D2…Dn)

Difficulties in statistical timing analysis

Path correlation due to reconvergent fanouts

Spatial correlation makes the path correlation structure more 
complicated

a
b

c
d

Correlated 
paths

Max func. of 
corr. paths

a→b→d

a→c→d

circuit delay 
distribution

Assume NO spatial correlation
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Problem statement

Find the PDF/CDF for circuit delay distribution:
Dmax = max(D1, D2, … , Dnpaths)

where Di : delay distribution of i th path in the circuit

Assume normal distributions on process parameter values
Why?
Is this reasonable?  If not, what is?

Parameter correlations
Leff shows high spatial correlations
Tox, Nd are largely uncorrelated

Basics of static timing analysis

Main features
Fast
Input pattern-independent
Uses coarse delay models  that are good for a first order 
approximation, and for optimization purposes

Circuitn inputs m outputs
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The critical path method (CPM)

Often (incorrectly) called “PERT” in the literature
• Place PI’s on a queue
• Process gate from head

of queue
• Add gate to queue if all

input delays known
• Complexity O(E)
• Can handle gate delay

dependence on order
of input arrivals
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Interconnect and gate delay models

Approximate a function by first-order Taylor expansion:

d is a linear function of normally distributed random 
variables
Sensitivities of gate/interconnect delay to the process 
parameters
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First-order 
Taylor expansion

: Set of  normally distributed random variables
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Simple approaches

Build in slacks to reduce variation
Bai et al., DAC 02

More exact methods
Perform statistical STA

Types of operations in STA
SUM: Ta→out = Ta + da→out ; Tb→out = Tb + db→out

MAX: Tout = max(Ta→out , Tb→out )

Gate delay modeled as a Gaussian
SUM is easy: sum of Gaussians = Gaussian
MAX of Gaussians is not a Gaussian
Approach: approximate max by a Gaussian

Berkelaar’s method

a
b

out
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Tsukiyama’s method

No correlations in Berkelaar’s method

Assume da→out, db→out to be correlated Gaussians
Basic operations:

SUM: still easy
MAX: use Clark’s results from 1961 to find mean, variance of the
max function

a
b

out

Incorporating spatial correlations

In reality, there is a strong spatial correlation between 
process variables
Orshansky’s method (DAC02)

Path-based approach
Finds path pdf’s, covariances, etc.

Uncorrelated distribution provides upper bounds on expected value
Uses results from probability theory to estimate pdf of the max 
function
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Agarwal’s path-based method

Variational model
Regions of variation

(0,1)
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ΔLg1= ΔL2,1+ ΔL1,1+ ΔL0,1
ΔLg2 = ΔL2,4+ ΔL1,1+ ΔL0,1
ΔLg3 = ΔL2,15+ ΔL1,4+ ΔL0,1

Agarwal’s path-based method (contd.)

For a small change
ΔD = SLΔL + SWΔW + …

Delay variations

Add up delay variations on each path using the sum 
operator to get path delay distributions

ΔDg1= K(ΔL2,1+ ΔL1,1+ ΔL0,1)
ΔDg2 = K(ΔL2,4+ ΔL1,1+ ΔL0,1)
ΔDg3 = K(ΔL2,15+ ΔL1,4+ ΔL0,1)
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Chang’s method

Variational model
Chip area divided into n squares
Nearby squares are correlated

Basic idea
Compute sensitivities of Delay to process parameters 

ΔD = Σk SLkΔLk + Σk SWkΔWk + …
Use principal component method to orthogonalize all variations 

ΔD = Σ SiΔpi

Calculating cov(di,dj) is easy!
Used to calculate approximation of max function
Sum function is easy, as before

PERT-like traversal: complexity = n × STA complexity

Principal Component Analysis (PCA): 

Element of original set can be expressed as linear function of the 
principal components (PC’s)

Orthogonal transformation
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(Principal Components)
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Idea of orthogonal transformations

Set of equiprobable
points for a 2D Gaussian 
= ellipse

Gaussian with a diagonal 
covariance matrix

[Adapted from Tim Marks http://cogsci.ucsd.edu/~desa/pca.pdf]

Correlated basis

Uncorrelated basis

Why?

1 2 .... Ni
i a a aD d d d= + + +

1 2 .... N j
j b b bD d d d= + + +

…

2

ad Ni
ad1

ad … POiPIi
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bd N j
bd1

bd POjPIj

Correlated

1 2 .... Ni
i a a aD d d d= + + +

1 2 .... N j
j b b bD d d d= + + +

…
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Orthogonalized
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Experimental results

Verified with Monte-Carlo simulation: Avg. error 0.2% for mean, 0.9% for s.t.d.
and 0.2% for 98 percentile point
Fast run-time: < 200s

Monte-
Carlo

0.000.0067-0.3%-0.1%s27

0.010.41378-0.3%-0.3%s1196

0.025.271531-0.5%-0.3%s5378

0.029.4229520.4%-0.1%s9234

0.1550.4850820.8%-0.1%s13207

0.1556.009932-0.3%-0.2%s15850

0.15182.3148087-3.6%-0.3%s35932

0.15132.0819024-0.9%-0.1%s38584

0.15130.3215295-0.7%-0.1%s38417

PCA(s)CPU(s)CPU (s)S.T.D.Mean

Proposed
Method

Error% w.r.t.
Monte-Carlo

Circuit 
Name

Fig 1: CDF and PDF Curves (ckt s38417)

Proposed Method

* Monte-Carlo

Variability in the clock network

Clock 

driver

Buffer

Latches

(a)

(b)

Timing tree
Root – clock driver
Sink nodes – Latches
Edges – gate + interconnect

For a Deterministic Timing Tree:
),......,,( ,2,1, npppmin dddmind =
),......,,( ,2,1, npppmax dddmaxd =

minmax ddskew −=
Aim : Determine the skew 
distribution for a Probabilistic 
Timing Tree (PTT)

Routed clock network with 
tree topology composed of 
driver gates

[Agarwal, ICCAD03]
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Statistical clock skew analysis

Propagate arrival time distributions to each sink node
Difficulties: correlations between shared sections of the 
tree, between min and max delay

Arrival time pdfs

p

t

p2(t )

p3(t )

p4(t )

p5(t )

p6(t )

p7(t )

p1(t )

Dmax

Dmin

[Agarwal, ICCAD03]

Approach

Key ideas
Compute the JPDF for Dmin and Dmax

Propagate bottom up
Details: see Agarwal et al., ICCAD 2003

JPDF

[Agarwal, ICCAD03]
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Statistical power analysis

Leakage power
Most susceptible 
to variations
Components

Subthreshold leakage
Gate leakage

Problem amounts to 
summing up a set of
correlated lognormals
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What next?

Statistical timing analysis methods will mature before 
statistical power analysis

The latter will be more “useful”
Methodology issues

How does it all “come together” and work?
Statistical library characterization
Sources of uncertainty

Design uncertainty
Environmental uncertainty (Vdd/gnd levels, temperature, soft errors)
Process uncertainty

Algorithmically, we still need solutions for
Nonlinear variations, non-Gaussian variations, multimodal 
distributions…
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Conclusion

Current approaches likely to be supplanted by statistical 
analysis
Timing and power are both affected
As a community, we now have an underlying algorithmic 
basis for this work
Much more work to come…


