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Statistical static timing analysis

= Intra-die variations in addition to inter-die variations
= Deterministic timing analysis = Statistical timing analysis
= Path-based analysis: find variability along a single path
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= Block-based analysis: Find the distribution (PDF/CDF) of:
Dmax = maX(le DZI g anaths)
D;. distribution of i" path delay

‘ Difficulties in statistical timing analysis

= Path correlation due to reconvergent fanouts

Assume NO spatial correlation
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= Spatial correlation makes the path correlation structure more
complicated




Problem statement

I
= Find the PDF/CDF for circuit delay distribution:
Dma = maX(DJ' DZI g anaths)

where D;: delay distribution of /t path in the circuit

= Assume normal distributions on process parameter values
= Why?
= Is this reasonable? If not, what is?

= Parameter correlations

= L. shows high spatial correlations
= T,. N, are largely uncorrelated

ox?
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Basics of static timing analysis

= Main features
= Fast
= Input pattern-independent

» Uses coarse delay models that are good for a first order
approximation, and for optimization purposes

7 1nputs Circuit 7 outputs




‘ The critical path method (CPM)

= Often (incorrectly) called “PERT” in the literature
« Place PI's on a queue
 Process gate from head
of queue
» Add gate to queue if all
input delays known

:@L- Complexity O(E)

g Can handle gate delay
dependence on order
of input arrivals

Interconnect and gate delay models

I
= Approximate a function by first-order Taylor expansion:

d=f (|3) P :Setof normally distributed random variables
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Sensitivity of £ to p;

= dis a linear function of normally distributed random
variables

= Sensitivities of gate/interconnect delay to the process
parameters




Simple approaches

» Build in slacks to reduce variation
= Bai et al, DAC 02

= More exact methods
= Perform statistical STA

Berkelaar's method

= Types of operations in STA
= SUM: Ta—>out = Ta + da—>out ; Tb—>out = Tb +d

= MAX: Ty = max(To o » Toosout)

b—out

out

= Gate delay modeled as a Gaussian
= SUM is easy: sum of Gaussians = Gaussian
= MAX of Gaussians is not a Gaussian
= Approach: approximate max by a Gaussian




Tsukiyama’s method

|
= No correlations in Berkelaar's method

= Assume d, .., dy_ou tO be correlated Gaussians

= Basic operations:

= SUM: still easy

= MAX: use Clark’s results from 1961 to find mean, variance of the
max function

Incorporating spatial correlations

= In reality, there is a strong spatial correlation between
process variables

= Orshansky’s method (DAC02)
= Path-based approach
= Finds path pdf's, covariances, etc.
» Uncorrelated distribution provides upper bounds on expected value

= Uses results from probability theory to estimate pdf of the max
function




Agarwal’s path-based method

= Variational model
= Regions of variation

Agarwal’s path-based method (contd.)

I
= For a small change
» AD = S AL + S AW + ...
= Delay variations
ADy,= K(AL, 1+ ALy 1+ ALy ;)
ADg, = K(AL, 4+ ALy 3+ Al )
ADg3 = K(AL, 15+ AL; 4+ ALy ;)
= Add up delay variations on each path using the sum
operator to get path delay distributions




Chang’s method

| ]
= Variational model
= Chip area divided into n squares
= Nearby squares are correlated
= Basic idea
= Compute sensitivities of Delay to process parameters
AD = X, S AL, + X, S AW, + ...
= Use principal component method to orthogonalize all variations
AD = X SAp,
= Calculating cov(d;,d)) is easy!
= Used to calculate approximation of max function
= Sum function is easy, as before
= PERT-like traversal: complexity = n x STA complexity
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Orthogonal transformation

Lrincipal Component Analysis (PCA):

Correlated Uncorrelated
(Original Set) (Principal Components)
> Transform =2,
X={X,...X}| == | X={X,...x'}
X 4= 0, 0= 1 X/ ' =0,0 =1

Element of original set can be expressed as linear function of the
principal components (PC’s)

X)=u+ CAalx)-o

Z't/;

where ], : 7 eigenvalue of cov. matrix of X

a - # element of # eigenvector of cov. matrix of X




Idea of orthogonal transformations

Set of equiprobable
points for a 2D Gaussian
= ellipse

Correlated basis

Gaussian with a diagonal
covariance matrix 1

-+ PC1

[Adapted from Tim Marks http://cogsci.ucsd.edu/~desa/pca.pdf]

‘ Why?
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Experimental results

= Verified with Monte-Carlo simulation: Avg. error 0.2%b for mean, 0.9%b for s.t.d.
and 0.2% for 98 percentile point
= Fast run-time: < 200s

Circuit Error% w.r.t. Monte- Proposed 1
Name Monte-Carlo Carlo Method - — Proposed Method
2
Z =¥ Monte-Carlo
Mean S.T.D. CPU (s) | CPU(s) | PCA(s) g 0.5
s38417 | -0.1% | -0.7% | 15295 | 130.32 0.15 ]
o
s38584 | -0.1% | -0.9% | 19024 | 132.08 | 0.15
s35932 | -0.3% | -3.6% | 48087 | 182.31 | 0.15 4% 38 4 4.2 44 46 48
Delay (ns)
$15850 | -0.2% | -0.3% | 9932 56.00 0.15 0.06 : :
s13207 | -0.1% | 0.8% | 5082 50.48 015 | 2 _
S 0.04]
$9234 | -01% | 0.4% | 2952 9.42 002 | g
o]
s5378 | -0.3% | -05% | 1531 5.27 002 | 2 jool
g o
s1196 | -0.3% | -0.3% 378 0.41 0.01
s27 | -0.1% | -0.3% 67 0.00 0.00 9% 38 ‘ 12 a4 ‘ 48
Delay (ns)
Fig 1: CDF and PDF Curves (ckt s38417)
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Variability in the clock network

= Timing tree

= Root — clock driver

= Sink nodes — Latches

= Edges — gate + interconnect
= For a Deterministic Timing Tree:

Ay =Min(d, 3,0, 50 d, 1)
d

min

d = max (dpy,d) oy d )

max

- skew =d max dmin
= Aim : Determine the skew
distribution for a Probabilistic
(b) Timing Tree (PTT)

Routed clock network with
tree topology composed of

driver gates
[Agarwal, ICCADO3]
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Statistical clock skew analysis

= Propagate arrival time distributions to each sink node

= Difficulties: correlations between shared sections of the

tree, between min and max delay
p \
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[Agarwal, ICCADO3]

Approach

= Key ideas
= Compute the JPDF for D
= Propagate bottom up
= Details: see Agarwal et a/., ICCAD 2003

and Dy,

min

JPDF

[Agarwal, ICCADO3]
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Statistical power analysis

= Leakage power
= Most susceptible
to variations
= Components
= Subthreshold leakage
= Gate leakage
= Problem amounts to
summing up a set of
correlated lognormals

What next?

= Statistical timing analysis methods will mature before
statistical power analysis
= The latter will be more “useful”

= Methodology issues
= How does it all “come together” and work?
= Statistical library characterization
= Sources of uncertainty
= Design uncertainty
» Environmental uncertainty (Vdd/gnd levels, temperature, soft errors)
= Process uncertainty
= Algorithmically, we still need solutions for

= Nonlinear variations, non-Gaussian variations, multimodal
distributions...

s
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Conclusion

Current approaches likely to be supplanted by statistical
analysis
Timing and power are both affected

As a community, we now have an underlying algorithmic
basis for this work

Much more work to come...
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