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The “DFM Problem”

e Thereis no “DFM Problem” ...

* ... But users have many specific problems

— TAT cost

— Manufacturing NRE cost

— Parametric yield

— Leakage and leakage variability
— Model-to-hardware correlation



Problem: Coping With Variability

« Sources of line width
variation
— OPC error
— Topography variation
— Mask variation
— Focus
— Etch
— Etc.
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Source: IBM

Going forward, this will get worse



Problem: Residual CD Error After OPC

TN

- Edge Placement Error

« Sub wavelength features are not printed perfectly even with
the use of OPC

« The residual CD error after OPC is called Edge Placement
Error (EPE)

« EPE is an important component of line width variation



Problem: Lgate and Leakage Variability
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« Small variations in gate length have a big
Impact on leakage power



What Would DFM Success Look Like?

X Larger guard bands?

X Statistical timing analysis?

X Better equipment?

X ... (+ many other failures of imagination)

\/Linking |IC Design and Manufacturing

[ Observation: Today’s link = GDS, .lib, BSIM4 ]



Linking IC Design and Manufacturing

* Drive design requirements into manufacturing

 Bring manufacturing awareness into design

* Do this as transparently as possible



Example: Design Intent Can Drive OPC
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yield loss mask cost

Cheaper masks Better yield
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Degree of correction Degree of correction

# of features
# of features

« Customized correction target per figure
* Automatically computed based on timing and yield analysis
* Superior solution for both yield and cost



Mask Complexity Optimization

Medium
tolerance
Lower
tolerance
Tighter
tolerance

Feature-specific OPC targets can reduce OPC run-time, mask complexity
and mask cost



Transparency: Annotated GDSII
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Clock _Period optimized) (Optimized)

CIk1 10ns +0.6042ns +0.5952ns

Clk2 2ns +0.2601ns +0.1228ns

Non-

Metric optimized Optimized Improvement
Shot Count 23491105 17424169 26%
OPC Runtime (seconds, wall time) 12353 7805 37%

File size (bytes, gzipped) 168816506 136117133 19%
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Example: Litho Simulation Informs Design Closure

« Manufactured shapes (yellow outline) can deviate from
drawn shapes (red) in a meaningful way

« Post-lithography performance analysis brings simulated
post-manufacturing shapes into a signoff flow

* Transparency: GDSII, BSIM4, SPEF, .lib, .

11



Example: Closing the Topography Loop
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« Performance-driven fill synthesis
* Driven by CMP simulation and timing / Sl closure
» Co-optimize fill pattern, interconnect design
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Example: Impact of Fill Pattern Choice
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M=4, N=3

How much can the fill pattern affect total
capacitance and coupling capacitance?

[VMIC-2004, SPIE-2005]

M=6, N=3



Problem: CD Variation Due To Topography

(b

«  Side view showing thickness variation over regions with
dense and sparse layout.

Top view showing CD variation when a line is patterned
over a region with uneven wafer topography, i.e., under
conditions of varying defocus.

Need OPC that is aware of post-CMP topography variation
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Topography-Aware OPC Flow

Library & Standard OPC Flow
Technology | SOPC i

GDSIl  f------------ AV - SOPCed GDSI|

CMP
Simulation

DO odel
Database

DOF I
Marking Layer TOPC

Input GDSII ) TOPCed GDSI|
for TOPC

« Map of thickness variation from CMP simulation is
converted to defocus marking layers and fed as GDSII for
TOPC [PMJ-2005]
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mpact

Number of EPE
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* Up to 90% reduction in edge placement errors

* Improvement in process window comes at cost of some
data volume and OPC runtime increase




Example: Placement for Depth of Focus
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SB = Scattering Bar = SRAF
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Thanks: Chul-Hong Park, UCSD




Problem: Layout Composability

Better than

Ex+3x> € x>
» Feature spacings are restricted to a small set

 Two components needed:

— Assist-correct library layouts = Inter-device spacing
within standard cells = Intelligent library design

— Assist-correct placement - space between cells needs
to be adjusted - Intelligent whitespace management
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Detalled Placement Makes Mistakes

it

After AFCorr
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Forbidden Pitch Rules
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130 allowable
Pitch (X:um)
#SRAF =0 0<=X<0.51 _ ]
#SRAF =1 | 0.51<=X<0.73 | £ forbidden
#SRAF =2 | 0.73<=X<0.95 | |
#SRAF =3 | 0.95<=X<1.17 | o pomane o
#SRAF —_ 4 117<=X —— Bias OPC(Defocus)
0 ‘—0—‘SRAI‘: OP‘C (D?fOC?S) | | | | | | | |
300 500 700 900 1100 1300 1500
pitch (nm)
Forbidden pitches
Bias OPC [0.37, <]
SRAF OPC [0.37, 0.509], [0.635, 0.729],[0.82, 0.949],[1.09, 1.16]
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Assist-Feature-Correct (AFCORR) Placement
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. ]
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#SRAFs increases due to AFCorr

— Obviously, less so with low utilizations

#high EPE and forbidden pitch instances decreases
* For both 130nm and 90nm designs

 Latest data: nearly 100% reductions

90 80 70 60 50
Utilization (%)
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Example: Systematic vs. Random Variation

* Today, systematic variation is lumped in with
‘random”

— = “uncontrollable variability”

— = “need for probabilistic and statistical design”
« Say this 5 times, slowly:
— If it is systematic, it can be modeled

— If it can be modeled, it can be predicted

— If it can be predicted, it can be compensated
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Problem: Linewidth Variation With Defocus
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« 3 different ranges of spacings
— Dense : 180nm ~ 260nm
— Self-compensated : 280nm ~ 360nm (within +/- 4nm CD band)
— Iso : 360nm ~ 400nm

o “Most-iso” linewidth 11% under nominal at 0.4um defocus

¢ “Most-dense” linewidth 13% above nominal
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Today: Variability Pessimism

Line Width

Actual variation if dense-
ness of lines is taken into

A med variation if
ssumed variatio account

layout pattern is not .

considered ) - Defocus o
Actual variation if iso-
ness of lines is taken into
account

Width of isolated lines decreases
v (FROWN)

« Extract and exploit systematic variation
— = Less worst-casing and over-design
— => Valuable in design for leakage

24 Heng/Gupta, DAC-2004



Defocus-Aware STA

D>

NNt Ny Y 7Y

« If all timing arcs frown, then the path delay will
always decrease through focus = one corner is

trimmed off !

* If slopes of smile/frown curves are known -
circuit sensitivity to focus variation can be
computed

25 Heng/Gupta, DAC-2004



Impact of Systematic Variation Compensation
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26 Heng/Gupta, DAC-2004



Sample Cell Layout (NAND2x6)

| -
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Self-Compensating Design Flow

A/
N

Library for 0.0um defocus
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T Library for 0.4um defocus

Parasitic cap. ..
Compensated circuits

CD look-up table (LUT) gives Leff at different spacing (S)
and focus (F)

— CD ~ f( Left Space, Right Space, Focus)
Library: 4 variants of each cell (original, iso, dense, self-
compensated)

Self-compensating design
— (1) Self-compensated cells
— (2) Optimization (self-compensated physical design)
* Dense + iso design
* Original + iso design
Sensitivity- based approach: minimize area penalty while
instantiating “iso” versions of “dense” cells to meet timing




Distribution of Delay Under Defocus
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delay(ns)

Monte-Carlo simulation with
1000 trials

Normal distribution of focus
with mean=0.0um and
30=0.4um

C3540 benchmark circuit with
required time 2.177ns

2 optimization strategies give
tighter distribution than self-
compensated cells option

Some tail over required time
in Original library case not
seen in the plot



Summary
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 "“DFM” success depends on real, transparent
links between |C design and manufacturing
— Today: many failures of imagination
— Transparent solutions are possible

« Concrete examples
— Design intent-driven OPC
— Post-litho simulation performance closure
— Topography-aware (everything)
— Detailed placement for depth of focus

— Systematic variation: model, predict, compensate

« Example: variational timing analysis and self-compensating
design for through-focus CD variation



