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Agenda

� Overview of silicon prototype debug and diagnosis

� Economic issues of silicon debugging

� Silicon testing and debug issues

� Overview of current methods for silicon debugging

� New methods for silicon debug

� Experimental results

� Summary
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What Do We Mean by Silicon Debug?
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Silicon Debug or Diagnosis?

IEEE TTTC “Silicon Debug and Diagnosis” definitions:

Silicon debug = Finding/locating/identifying design errors on silicon

Silicon diagnosis = Finding/locating/identifying manufacturing defects or faults

Silicon debug and diagnosis performed when first silicon fails
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Silicon Prototype Test and Debug Activity

� Manufacturing test – screen out physically defective parts

� System validation - verify silicon prototype works correctly in situ

� Failure analysis – find systemic defects to improve yield
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Economic Case for Quick Prototype-to-
Volume

� On-time delivery is largest single factor for profitability (Source: McKinsey)

� Missed market opportunities worth millions $$

� Multiple spins are expensive: mask costs pushing $1 million

� Silicon test/debug utilizes personnel resources, which are better
deployed on new projects
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PrototypeConcept Volume

7 to 8 months 6 to 7 months

Prototype to volume is increasing!
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Silicon Testing Issues

� Many defects are difficult to model and escape detection by testers
� Structured tests (ATPG, BIST, etc.) do not replicate real-word conditions,

resulting in “over-testing” and “under-testing”, examples:
� Power consumption during for 65nm as high as 30x, creating data-

corrupting voltage drops – change in VTH   (chip rejected)

� Crosstalk effects are pattern sensitive and not targeted (chip passed)

� More transistors increases time required to isolate causes of errors
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Silicon Debug – Data/Environmental
Issues

� Limited silicon signal data prevents understanding of behavior

� Silicon errors may either be functional bugs or physical defects

� Silicon’s polygonal structure hinders functional understanding

� Silicon environment (file formats, tools, etc.) is different from design

VHDL, Verilog Simulation
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Silicon Debug – Dependence on
Designers
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� Designers have function domain expertise

� Designers assist system validation engineers when functional error
suspected and isolated to single silicon device

� Difficult to debug due to lack of post-silicon focused debug tools and
methodology; designers rely on pre-silicon tools
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Today’s Ad-Hoc Silicon Debug Method

� Much effort to obtain little insight

� Many interfaces, tools, databases, and steps increases
chance of error

� Little or no automation of these steps
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Proposal to Improve Silicon Debug for
System Validation
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On-Chip Hardware - Design-for-Debug

� Debugging silicon in situ easier when designed with
“visibility” into internal nodes

� Logic which brings out data from the silicon while in
the system is known as “design-for-debug” (DfD) logic

� Most DfD today is proprietary, although several vendors offer
DfD IP

� DfD utilized when failures occur during system validation
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� DfD sophistication varies

� Simple – in situ shift out of scan data

� Complex – breakpoints, assertions,
debug busses

� DfD must be planned and implemented
as part of standard design flow prior
to tape-out

Design-for-Debug (DfD) on the Chip

� Most implementations leverage design-
for-test (DFT):

� IEEE 1149.1 controller

� Internal scan chains
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Opportunity for DfD

� >80% of designs contain scan chains (DFT)

� Only 5% of designs have design-

for-debug (DfD) now

� DfD builds on DFT and adds as little as

0.3% area for 8 million gate design
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Designs

DfD
Scan (no DfD)
Non-scan

Opportunity for re-use
DFT for DfD
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System Validation, DfD, and Real-Time
Access

� On-chip DfD typically hooks up to a pod and is activated by a separate
software-based control program

� The pod is a device that makes the electrical characteristics between
the DfD port and the PC port compatible

� The DfD control program accesses data such as the internal registers

� This data must then be processed for debug tools
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Data Inflation

Slide 12

Tracing & Analysis

Registers
at cycle n

Registers
at cycle n+1

Registers
at cycle n+2

Silicon Data

� Data inflation engine makes limited data more useful
� Convert limited scan register data to namespace, time

� Inflate (compute) unobserved nodes

� Elegantly deal with missing state data

� View and trace activity using advanced HDL debugging techniques
� HDL-oriented debug of silicon quickly leverages designers’ expertise
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Experimental Results

� Two cases of actual silicon signal dumps

� By dumping 14% of signals, 94% of device signals became visible
(case #2)

� DfD significantly increases observability

� Increased observability has huge potential to decrease silicon
debug time
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Summary of Silicon Prototype
Debugging

� Silicon debug/diagnosis is a bottleneck to time-to-volume

� Existing silicon debug flows are ad-hoc, inefficient

� Silicon debug flows must better connect the system
validation engineers and designers

� Emerging DfD techniques combined with new
technologies will enable more efficient debug
of silicon prototypes System

Validation

Design
Debug


