
1

A unified Data Model for
EDA tool Integration

Patrick Groeneveld
EDPS 2005 Monterey

© Patrick Groeneveld
EDPS 2005 page 2

Summary

•History and guiding concepts
•Objects in the data model
•Data structure for rectangle
•TCL access to data model
•GUI and Volcanoes
•STA
•Conclusions

© Patrick Groeneveld
EDPS 2005 page 3

Magma, August 1997
Terra Bella Avenue, Mountain View, CA

HamidHamid

GayleGayle

LukasLukas

RajeevRajeev PatrickPatrick

HardyHardy KarenKaren HongHong
QuiziQuizi

© Patrick Groeneveld
EDPS 2005 page 4

Goal: RTL to GDSII system

RTLRTL

CDFG Net list of Super Cells

RoutingRouting

Mask layoutMask layout

Placement

© Patrick Groeneveld
EDPS 2005 page 5

Initial Data Model design objectives

• Somehow link logical and physical world
– Look for similarities

• Minimize implementation effort
– Maximize code re-use: fewer lines = fewer bugs

• Efficient, fast:
– Minimize tool communication overhead.
– Since we anticipated significant communication

• Enable fast incremental operation
– Keep data in-core
– Timer, placer, routers

• Not as objective:
– Foreign tool integration

© Patrick Groeneveld
EDPS 2005 page 6

Interoperability for RTL2GDS2 flows

• Plugging a tool into a new environment is hard work
• Format/API is not the real tool integration problem.
• Instead, it’s the interpretation of the exact meaning of the design

data, and the tuning of the tool in the flow.
• Fixing the exact interpretation stifles innovation.

RTL

Open
Access

tool

tool

tool

tool

Cadence

Unified
Data

Model
tool

tool

tool

tool

RTLRTL

Milky
Way

tool

tool

tool

tool

GDS2 GDS2GDS2

Magma Synopsys

© Patrick Groeneveld
EDPS 2005 page 7

General architecture

Tool x..

Placem
ent

Global router

Buffering

Cloning

Track router

D
etailed router

Tool y..

D
etailed placer

Incremental Timer
Parasitic extraction/modeling

TCL interface
Command window/ scripts

GUI
(java)

.lib, lef
def, GDSII
Verilog, etc.

TCL conversion
script

Native

volcano

netsnets
cellscells wireswires

pinspins Library dataLibrary data

Design rulesDesign rules

mantle.exe

mtcl> data get
mtcl>

External formats

Disk image

P.G. 8

Blast Rail power analysis steps in magma flow

Floor planning

Activity annotation &Activity annotation &
propagationpropagation

Slews from Slews from
the builtthe built--in in
timer/extractortimer/extractor

Power AnalysisPower Analysis

Current & voltage dropCurrent & voltage drop
calculationcalculation

Library
data

RTL synthesis

Power infrastructure
generation (rails, mesh)

Rail network extractionRail network extraction

Voltage drop
and EM textual

reports

net listnet list

floor plan with orfloor plan with or
without placed gateswithout placed gates

Voltage drop inducedVoltage drop induced
delaydelay

Physical synthesis
and optimization flow

VCD
file

Power
consumption

report
Voltage & current sources, Voltage & current sources,
resistancesresistances

P.G. 9

Complex tool interactions without disk access

Static Static
timing timing

analysisanalysis

Power Power
analysisanalysis

Physical Synthesis

DC DC VdropVdrop
analysisanalysis

ThermalThermal
analysisanalysis

MultiMulti--VDDVDD
Islands,Islands,
backbiasbackbias

ClockClock
gatinggating

AutoAuto--
PowergridPowergrid

MultiMulti--VtVt

Transient Transient
VdropVdrop

analysisanalysis

DecapDecap
insertioninsertion

PowerPower--
placementplacement

ActivityActivity
analysisanalysis

Library &Library &
SiliconSilicon

analysisanalysis

NetworkNetwork
analysisanalysis

RCRC
xtorxtor

B
last create/fusion

R
TL-to-G

D
S

© Patrick Groeneveld
EDPS 2005 page 10

Transport database doesn’t work well

common data base
with all data.

api

internal
datastructure

Tool 1

api

internal
datastructure

Tool 2

api

internal
datastructure

Tool 3

api

internal
datastructure

Tool 4

api

internal
datastructure

Tool 189

api

internal
datastructure

Tool 190

e.g. placer e.g. GUIe.g. timer

• The communication between tools cannot afford this slow format
conversions.

• Data is duplicated.

© Patrick Groeneveld
EDPS 2005 page 11

Base objects in the in-core data model

BR::ROOT

BR::LIB

BR::MODEL

BR::NET

BR::ENTITY

library

entity

model

Library object
Also contains design rules, etc.

Functionally equivalent modules

The design. Contains cells,
Pins, nets and more

Net object.
Contains pins and wires

BR::PIN
BR::CELL

BR::WIRE

Wire object:
Mask rectangle in
a specific layer.
Many millions

(hierarchy)
Cell object
Could be an

instantiation of a
standard cell or a

macro

Pin object.
Contains wires,
Belongs to Net

and Cell or Model

Downmodel

© Patrick Groeneveld
EDPS 2005 page 12

Implementing ordered collections of objects

Array of
pointers to objects

Linked list KD-Tree Hash table

payload

payload
payload

payload
payload

payload payload

payload

payload

payload

payload 504

240 733

480

761

505

payload

payload

payload

payload
payload

• Each structure has its own “sweetspot”:

goodn130%Hash Table

OKlog(n)log(n)20%KD-Tree

Very goodnn30%Linked list

badnn 15%Array

Add/remove
speed

Find
neighboring

Find specific
object

Memory
overhead

© Patrick Groeneveld
EDPS 2005 page 13

The structure in GEO::KDTREE
• This is a binary tree. The nodes of the tree contain a set of rectangles.
• A non-leaf node contains cuts the design in three pieces:

– the part that is completely left (below) the cut line
– the part that touches the line
– the part that is completely right (above) the cut line

480 761 1000
504

240

505

350

733

480

761

504

505

240

733

set of rects
on cut line

non-leaf node:
vertical cut line

at 480

0 1000

Leaf node
accumulates
rectanglesLeaf node

splits into two
if there are

too many rects

© Patrick Groeneveld
EDPS 2005 page 14

MTCL: access to data model through TCL
• Full access to the data model is provided through TCL
• Every object is uniquely ‘addressable’ by a text string.
• This addresses cell ‘gate744’ in model ‘display’:

mtcl> set c /work/display/display/cell:gate744

entity Name of the celllibrary model

• This would list the nets in model $m:

mtcl> data list model_net $m
/work/display/display/net:clock1, /work/display/display/net:enable,..

• This deletes a net:

mtcl> data delete object /work/display/display/net:clock2

© Patrick Groeneveld
EDPS 2005 page 15

MTCL: addressing rectangles
• The millions of physical objects can be uniquely addressed by their

coordinates in the string

100n 300n 150n 50n METAL1 routing /work/display/display/net:n1244

Left
Bottom

Width layer ‘owner’ of this box
Metal 1 wire
of net n1244

Height layer type
300
350

100 250

500n 700n 150n 50n METAL3 segment /work/display/display/net:n1244
Metal 3 global

routing segment of
the net n1244

100n 300n 10n 10n . outline /work/display/display/cell:c32

Cell c32 (and its
placement)

© Patrick Groeneveld
EDPS 2005 page 16

Example: manual interaction through
MTCL

• Create a box (a M1 wire owned by a net called ‘newnet’)

(0,0)

(10,1)

Create a net
called newnetset up10u x 1u

wire at part of
the net.create the wire

(= box) in the data
model

set n [data create net $m -name newnet]
set box “0 0 10u 1u M1 routing $n”
data create box $box

macro

• Stretch the power line such that it touches the macro:

set macrobox [data only model_outline $macro]
data put $box right [box left $macrobox]

© Patrick Groeneveld
EDPS 2005 page 17

Finding the cells in a window
• The cells in our model (= BR::MODEL) are

rectangles (= GEO::RECT).
• They are stored in a GEO::KDTREE. In that

way, they are easily area-queryable.
• Both the C++ as the MTCL iterator take a

window as optional argument.

BR::ROOT

library BR::LIB

BR::ENTITY

BR::MODEL

entity

model

// prints all cells in the window
GEO::RECT window(0, 0, 100000, 100000);
BR::MODEL::CELL_ITER cit(model, &window);
while(cell = cit.next()) {

cell->print();
}

A KDTREE of cells.

mtcl> set window “0 0 100u 100u”
mtcl> data loop c “model_cell –window $window “ $m {

puts $c
}

BR::CELL BR::CELL
BR::CELL

© Patrick Groeneveld
EDPS 2005 page 18

Getting the wires in a window

mtcl> set window “0 0 100u 100u”
mtcl> data loop b “model_box –window $window” $m {

puts $b
}

• This is based on the KDTREE area query. The complexity of the layer
structure and the hierarchy is hidden behind this iterator.

© Patrick Groeneveld
EDPS 2005 page 19

Magma RTL-to-GDS script in TCL

set m [import set m [import verilogverilog mydesign.vmydesign.v]]

import volcano library.volcanoimport volcano library.volcano

fix fix rtlrtl $m lm $l

fix time $m $lfix time $m $l

fix plan $m $lfix plan $m $l

fix cell $m $lfix cell $m $l

fix clock $m $lfix clock $m $l

fix wire $m $lfix wire $m $l

export volcano export volcano mydesign.volcanomydesign.volcano

export export gdsiigdsii $m $m mydesign.gdsmydesign.gds

check model $m check model $m --level finallevel final

run route stub $mrun route stub $m

run route global $m run route global $m --antennaantenna

run route track $m run route track $m --optimize noiseoptimize noise

run route power $m run route power $m --finalfinal

check route spacing_short $mcheck route spacing_short $m

check route open check route open --segment $msegment $m

run route final $m run route final $m --singlepasssinglepass

run route antenna $mrun route antenna $m

run route refine $mrun route refine $m

run route final run route final --incremental $mincremental $m

check route check route drcdrc mm

© Patrick Groeneveld
EDPS 2005 page 20

The GUI

• The GUI is a universal
viewer and editor on the
data model

– A graphical
extension of TCL
access.

• All physical objects can
be viewed, queried and
modified.

• Use straightforward
KDTREE iteration for
drawing a window.

• ‘right-mouse-button
click’ shows all
properties of the object.

• Also displays timing
paths, DRC’s, hierarchy,
voltage drop, etc. etc.

© Patrick Groeneveld
EDPS 2005 page 21

X-probing

© Patrick Groeneveld
EDPS 2005 page 22

Engineering issue: safety

• TCL access to data model must be very robust.
• Major problem is the reference of ‘dead objects’

rect

rect
rect

rec
rect

Selection set

© Patrick Groeneveld
EDPS 2005 page 23

‘Volcanoes’: snapshots of the flow

Magma flowMagma flow

Designrules
(.lef
gds2)

Floorplan
(.def).lib

floorplan.volcanologic.volcanortl.volcanolibrary.volcano place.volcano route.volcano final.volcano

600Mb30Mb

• The contents of the magma data model can be written to
disk at any time during the design flow. A volcano contains a
complete snapshot of all design data.

• Resume operation, or use as backup.
Timing
constraints

RTLRTL
Verilog/
vhdl

GDSIIGDSII
mask
data

© Patrick Groeneveld
EDPS 2005 page 24

Optimize.volcano

Volcanoes

Library.volcano

• Essential for team cooperation.
Flows can be cut into pieces.

• Key is the all-or-nothing concept: a
single volcano is enough!

• Format is binary, but portable
across platforms.

• Built in compression reduces disk
image.

script part 1
source mysettings.tcl
…
fix_whatever $m $l
…
export volcano part1.volcano
exit

script part 2
source mysettings.tcl
import volcano part1.volcano
fix_somethingelse $m $l
…
export volcano part2.volcano
exit

© Patrick Groeneveld
EDPS 2005 page 25

Built-in incremental Timer
• Incremental.

– The data model
records any
changes. Values are
cached and
recalculated when
necessary.

• Timer has 4 different
levels of accuracy to
evaluate wire load:

– WLM, HPW, global
route, detailed
route

• Performs ‘on-the-fly’
parasitic extraction of
wires.

© Patrick Groeneveld
EDPS 2005 page 26

Summary

• Fast high-capacity in-core data model:
– Data is stationary in Data Model
– Tools operate on it.

• Simple object-oriented structure

• Deep access to all data enables extensive customization.

• Built-in timer, extractor and DRC
– Data is correct and up-to-date at any time.

• Data model was key for the success of Magma
– Used on many hundreds of tape-outs.

	A unified Data Model for EDA tool Integration
	Summary
	Goal: RTL to GDSII system
	Initial Data Model design objectives
	Interoperability for RTL2GDS2 flows
	General architecture
	Blast Rail power analysis steps in magma flow
	Complex tool interactions without disk access
	Transport database doesn’t work well
	Base objects in the in-core data model
	Implementing ordered collections of objects
	The structure in GEO::KDTREE
	MTCL: access to data model through TCL
	MTCL: addressing rectangles
	Example: manual interaction through MTCL
	Finding the cells in a window
	Getting the wires in a window
	Magma RTL-to-GDS script in TCL
	The GUI
	X-probing
	Engineering issue: safety
	‘Volcanoes’: snapshots of the flow
	Volcanoes
	Built-in incremental Timer
	Summary

