
 1

SSppeecciiffiiccaattiioonn CCaappttuurree bbaasseedd SSooCC MMooddeelliinngg
AAsshhwwiinn KK.. KKuummaarraasswwaammyy,, VV.. AA.. CChhoouulliiaarraass,, TT.. RR.. JJaaccoobbss,, aanndd JJ.. LL.. NNuunneezz--YYaanneezz

Abstract— We propose a new EDA tool flow which allows SoC

architects to utilize an object-oriented approach in the
development of streaming next generation SoC's including
shared-memory, cache-coherent, single-chip multiprocessors.
The tool will allow the visual definition of a complex computation
kernel/SoC through instantiation of parametric IP such as
processors, SDRAM controllers, DMA engines, on-chip buses,
switch matrices and coherency directories, coprocessors, etc.
Such IP is captured either at the specification level via UML, at
the model level (SystemC, SpecC or ANSI C) or at the
implementation level (RTL VHDL or Verilog). The unified
environment then simulates the whole system during the
architectural refinement phase and in the process, a near-optimal
solution in terms of area, power and performance, is achieved.
Finally, the output of the tool consists of a cycle-accurate
executable model accompanied by the system RTL.

I. INTRODUCTION
We present preliminary results of a new EDA flow which
unifies the specification capture and design modeling.
Current, tools in the market namely Incyte, Mageillem, Visual
Elite have provided solutions for specification optimization,
graphical design entry and hardware-software partitioning to
help designing of high performance IPs , but clearly there is
still a lacking of a complete robust flow which helps the
designers to take designs from specification to silicon and
there is been a concrete effort to develop such a flow.
We propose the unification of the specification capture,
modeling and optimization of very high performing streaming
system-on-chip designs through a unique combination of
technologies. The overall flow can be classified into two parts
namely the unified specification capture and the unified
simulator.
At present the flow is partially completed with work being
done on the specification capture stage so as to accommodate
the existing system level design languages (SLDL) such as
SystemC and SpecC.
We use UML as the front end specification capture format and
convert the UML to a known SLDL like SystemC or SpecC.
This translation is being performed using a unique
combination of technologies and we have a prototype of
translation kit from specification to SLDL(SpecC).
Simultaneously work is being performed to accommodate
SystemC, as it is becoming more widespread through tools

such as SystemC complier.

Affiliations
Ashwin K.Kumaraswamy, V. A. Chouliaras and Tom R. Jacobs are with Dept
of Electronic and Electrical Engineering, University of
Loughborough,Loughborough,UK,email:ashwink.ctes2004b@cselondon.com
J. L. Nunez-Yanez is with the Dept of Electronic Engineering, University of
Bristol, Bristol, UK

II. UNIFIED SPECIFICATION
We propose a methodology that can transform UML models
into a known System Level Design Language (SLDL)
(SystemC/SpecC). In other words, UML model acts as a
“wrapper” to the SLDL methodology. In UML each aspect of
the SLDL’s methodology can be modelled and refined. The
standardization of UML provides a base to revise the
approaches to combine SLDL with object oriented analysis
and design techniques (OOAD) techniques. One of the main
directions for the joint application of SLDL and UML can be
identified as modelling SLDL constructs in UML. This
direction serves mainly the idea to make large SLDL
specification better understandable and to give additional
information (e.g. inheritance hierarchies, dependencies,
pattern structures) for documentation purposes or as additional
implementation information. UML is mapped onto the SpecC
methodology. Uniqueness, to this new methodology, is that
the UML representation of the system is separated from the
underlying methodology. This helps in unifying the ways a
system can be represented in UML without worrying about
the way it will be implemented.
A Hardware/Software co-designed system can be specified
through the concepts of behaviours that interact via channels
through ports and interfaces. There is a clear separation
between computation and communication where behaviours
model computation, and communication is modelled by using
shared variables and/or channels [5]. Computation will consist
of behaviours and their definitions. Communication will
consist of ports, channels and interfaces. (Interfaces can also
be used in the modelling of computation [3, 8].)

Modeling of Computation
In UML, the behaviours are modelled as classes. The local
variables and the functions are also modeled within the class
in their respective positions. A composite behaviour will
contain instances of other behaviours. These compositions can
be modeled using associativity. When breaking down
behaviour into sub-behaviours, for structural hierarchy,
generalizations can be used. There can be two types of
hierarchy: structural and behavioral. Structurally, behaviours
can be broken down
into sub-behaviours and these into sub-behaviours, and so on.
Designs are specified in a hierarchical manner using top-down
functional decomposition (behavioral hierarchy). Both these
hierarchies correspond to the concept of generalization and
associativity in UML [5, 8].

Modeling of Communication

 2

To model interfaces, UML’s interface notation is used. An
interface is like an abstract class that consists of a set of
method declarations. Interfaces can also be placed in a
hierarchical fashion. Behaviours can, optionally, “realize”
single or multiple interfaces. The channel or the behaviour
that realize the interfaces should supply the definitions for the
method declarations.
The stereotype, <<channel>>, is used to represent a class as a
channel. Channels are also modelled in the same manner as
behaviour. Ports can be modelled in two ways. A port can
either be a simple variable or another Interface or Class. In
order to identify an object as a port, the <<port>> stereotype
is used. If the port is declared as a simple variable of type
type1, the variable declaration in UML will be as

name: type1 <<port>>

The <<port>> stereotype helps in identifying certain variables
and also associations as ports, rather than local variables or
instances respectively.

Modeling of Execution
The main problem in designing a system is the modeling of
execution or show parallelism i.e., to represent behaviors that
will be executing in sequence, parallel or pipelined. There are
two different ways of specifying this. It is well known that in
UML different views are meant for different activities of
modeling. Thus, these considerations have to be mentioned in
more than one of the views. In the static view (class diagram)
we annotate these using stereotypes. This is very helpful,
because the class diagram shows the static structure of the
system. The problem of showing parallelism in the execution
model can be solved through composition. Leaf behaviour, by
itself will only perform its operations sequentially. If a
component has to be modeled to execute in parallel or
pipelined mode, then its behaviour can be further reduced into
separate classes and its objects will be composed into the main
component. These sub-behaviours can then be modeled to run
in parallel or pipelined mode by specifying the mode of
execution to the composite behaviour (main component). This
can be done in the static view of the model. The actual
execution of the composite behaviour can be modeled in
detail, using State chart diagrams and/or Sequence diagrams.
It was concluded that the State Machine view and the Activity
view of the UML had enough notations specified to describe
the internal behaviours of any component. Clocks can also be
modeled as behaviours and can be made to generate events.
These events can be used in other views to specify the timing
characteristics of the system.

Transformation of Static View
Since SpecC is not an Object oriented language, there is no
way of representing object hierarchies. Thus generalization is
used to model behavioral hierarchy. In other words,
behavioral hierarchy is modeled as a composition of multiple
behaviours, according to the SpecC methodology. Therefore
generalizations are transformed in the same manner as
associations. A static view is shown in figure (1).

Transformation of State Machine View
The state machine view describes the dynamic behaviour of
objects. Each object is treated as an isolated entity that
communicates with the environment by detecting events and
responding to them [7]. A state machine is a graph of states
and transitions. Usually a state machine is attached to a class
and describes the response of an instance of the class to events
that it receives.
A State Machine view is used to model the internal behaviour
of an object of a class. A state machine contains states that are
connected by transitions. Each state is defined as some unit of
time in which the object stays and performs certain operations,
whereas transitions are instantaneous, i.e. they occur at zero
time. When an event occurs, it may cause the firing of a
transition that takes the object to a new state. When a
transition fires, an action attached to the transition may be
executed. Theoretically, this execution period is zero. State
machines are shown as a state chart diagram (Figure 2).

Fig 1. Static View

Fig 2: State Machine View

UML SystemC/SpecC

Unified SoC Modelling

Synthesis
Floorplanning
Place & Route

Unified
Simulation/

Optimization
Flow Optimized

Software
Component

ANSI-C (Software)

Unified Specification Capture

Legacy IP Libraries
(HDL)

C-Compiler
(ASIC software)

SoC Product

Design Exploration
Parameters

ANSI-C (C-Acc)

Existing SoC Flow

FIG 3. OVERALL FLOW

 3

Unified Simulator

SystemC

HDL
ANSI-C

(Hardware)
ANSI-C

(Application)

Common-Kernel simulator
(Modelsim , VCS)

Proprietary , MT ISS
(Cycle-accurate)

FLI

GUI

Optimized system
(RTL)

Optimized application
 (threaded , vectorized)

Reports

Genetic
Algorithm
Design
Space
Walker

Fig 4: Internal flow path

III. THE SIMULATOR FLOW
Fig.3,4 depicts a high-level view of the proposed SoC Design
Framework tool that we are currently developing. It consists
of the input interface which can accept silicon and software IP
in a number of forms including SystemC, standard HDL
(VHDL and Verilog), cycle-accurate C conforming to the
internal API and finally, standard C for the application. These
elements are slotted in system-defined and used-defined
‘Stencils’ from which on they are available for manual or
automatic instantiation and design space exploration.

A. Core Simulation Engines
The primary simulation engine is based around a

parameterized, multi-context, Instruction Set Simulator (MT-
ISS) derived from the Simple scalar computer architecture
research tools. The default ISS has been re-architectured to
allow the instantiation of a number of processor contexts and
additional programmer-visible state for multi-processor (MP)
synchronization. The simulator can be considered as an
Exclusive-Read, Exclusive-Write (EREW) Parallel RAM
(PRAM) machine. Architectural hooks are in place to allow
interfacing to a cycle-accurate (CA) back-end. In this way, the
ISS is dynamically producing (short) instruction traces which
are (dynamically) consumed by the CA back-end. In the
process, various parameters are evaluated such as the Clocks-
Per-Instruction (CPI) ratio per CPU, bus utilization, ICache
and Dcache misses, pipeline stalls due to dependencies
amongst others.
The MT-ISS is one of the core simulator of the flow and
drives both the programmable and non-programmable C-
based simulation models along with being used for software
development.
The second simulation engine is an industry-standard tool
such as Mentor Graphics Modelsim. It interfaces to the cycle-
accurate infrastructure via the Foreign Language Interface
(FLI) and allows for the modeling of legacy IP (VHDL,
Verilog) and the primary output of the specification-capture
front-end which is described in System-C.

B. Manual and Automatic Flows
There are two major flows (feedback loops) in the tool. The

first is based around a GUI solution which is used to
instantiate silicon IP blocks and application software
components from the IP stencils on to the SoC canvas. The
contents of those stencils can be ‘dragged’ onto the SoC area
thus, incrementally building up and simulating the SoC model.
We make no distinction as to whether the stencils contain
synthesizable Silicon IP or CA models as the core simulators
permit their arbitrary mix. This is of paramount importance in
the modeling of highly-complex, future SoC architectures.
Experimentation takes place after the SoC has been ‘drawn’
and it’s memory map established and populated. The feedback
loop of Fig. 4 illustrates the manual or automatic refinement
process, from SoC specification to performance closure and
clearly illustrates the synergy between the MT-ISS, CA back-
end and industrial simulators in providing a unified
framework for SoC modeling.
A further route exists where the process is fully automated. In
this case, a genetic-algorithm (GA) design space walker takes
over the refinement process of the SoC once the initial
allocation of programmable and non-programmable resources
has happened.

C. Embedded CPU Stencils
The primary programmable engine used is based on an open-
source, 32-bit RISC CPU with an extended Instruction Set to
allow for hardware barrier synchronization. In addition, the
programmer’s model was extended to include a unique, non-
programmable, processor ID field which is used to identify the
executing CPU to a software thread.
As we are targeting primarily Data-Level-Parallelism (DLP),
we have augmented the microarchitecture of the Leon-2 CPU
to include a custom coprocessor channel in order to
communicate to very high performance, tightly-coupled vector
coprocessors. Typical transactions along this new interface are
depicted in the Fig 5 shows a coprocessor data operation on
cycle 1 followed by a host-to-coprocessor register transfer on
cycle 2. In cycle 3, a coprocessor register is requested by the
RISC processor but due to internal stall conditions, data are
made available one cycle later than the expected time (cycle 5
instead of cycle 4). During that time, the main processor is
held with the holdn signal. Finally, a second read operation,
this time directed to Coprocessor 1, is initiated in cycle 6.
Results are made available to the main pipeline in cycle 7.

holdn
deasserted

1 2 3 4 5 6 7

data_op m vrc m vcr data_op m vcr

din

dout

dout

holdn asserted

data out valid

data into coproc

clk

pcop_in.cop_no

pcop_in.holdn

pcop_in.valid

pcop_in.opc[19:0]

pcop_in.din[31:0]

pcop_out[1].dout[31:0]

pcop_out[0].holdn

pcop_out[0].dout[31:0]

pcop_out[1].holdn

 Figure 5: Typical Coprocessor Channel Transactions

 4

C
O

N
TR

O
L PIPE

LIN
E

RF
2R1W

I
$Instruction

Cache

RISC
Decode

Tags

way select
mux

I
$Data Cache

way select
mux

R
F

RISC
CPU

ALU
CTRLOther

CTRL

E
X

E
C

D
M

E
M

/
E

X
E

C
2

W
B

D
E

C
O

D
E

IF
E

TC H

DATAPATH

Coproc
Decode

Reduction Logic

Bypass Logic

SDP
15

SDP
14

SDP
0

opr1_ropr2_ropr3_ropr4_ropr5_r

BUS
Controller

AHB I /F

scalar
write-buffers

ic
_m

is
s,

dc
_m

is
s

5X128
vector
load
path

opr1opr2opr3opr4opr5

128 128 128 128 128

RF
5r1w

ADDR
Update
Logic

Dual-Banked
Local Memory

Merge Logic
(Read Port)

Vector
Dout

res15 res14 res0

acc
BUS

Controller

AHB I/F

CTRL

CTRL

CTRL

7:0127:120 119:112

MEMORY
PIPE

DMA
Ctrl

Vector Register FIle
Scalar Register FIle

CTRL
 PIPE

Figure 6: Scalar CPU and Vector Accelerator

Fig. 6 shows the combined processor-coprocessor
microarchitecture which includes an instance of a parametric
vector accelerator implementing three custom instructions for
the data-parallel sections of the MPEG-2 encoder attached to
the scalar CPU which is a standard 5-stage design. From the
diagram, instructions are fetched from the multi-way, set-
associative instruction cache and clocked into the instruction
register. Decoding takes place in the DECODE stage with the
RISC register file accessed at the falling edge of the clock.
The bypassing logic in DECODE determines whether register
file data or internally pipelined results are clocked in the ALU
input registers. During EXEC, the ALU operation is
performed and a virtual address is computed. Scalar data
cache access takes place during DMEM/EXEC2 and scalar
results return to the RISC pipeline during this cycle. Finally,
results are clocked into an intermediate register prior to
committing to the processor register file. The processor
incorporates configurable data and instruction caches the
former in a write-through configuration with no-write-allocate
policy. Both caches are refilled over the on-chip bus via the
bus controller.

D. Interconnect Stencils
We are targeting primarily the SoC modeling and
implementation domain. We therefore have included support
for multi-layer AMBA (AHB) based on the infrastructure
provided by the Opensource CPU, augmented with the
hardware synchronization primitives. A typical scenario of a
paremetric, cache-coherent, SoC MP is depicted in Fig. 7.

CPU 0

SDRAM
CTRL

CPU 1 CPU N-1

Periheral Bus
Bridge

Barrier CTRL

Ba
rri

er
_0

Ho
ld_

0

Ba
rri

er_
1

Ho
ld_

1

Ba
rrie

r_
N-

1

Ho
ld

_N
-1

Irq Ctrl Ctrl Regs TimersUART

SDRAM Channel

AH
B

I/F

AH
B

I/F

AH
B

I/F

Peripheral Bus

High Performance Bus

Figure 7: Typical bus based parametric SoC multiprocessor

Further development is underway to allow for very high

bandwidth interconnects (other than a hierarchy of buses) to
be utilized. In this case, distributed coherency directories are
utilized to ensure that the CPU caches remain consistent.

E. Streaming unit stencils
Prior research into statically-configurable (off-line
configurable) vector/SIMD accelerators has successfully
concluded that such units are of paramount importance in
achieving performance closure in a consumer/media SoC. The
complexity-metric reduction due to the vector instructiosn
implemented via such tightly-coupled coprocessors for the
case of MPEG-2 TMS reference software is as shown in Fig
8.

Fractional complexity reduction
Full-search ME

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

6 16 26 36 46 56

Search Range (pels)

Fr
ac

tio
na

l C
om

pl
ex

ity
 R

ed
uc

tio
n

SUM(VLMAX=4)

SUM(VLMAX=8)

SUM(VLMAX=16)

Figure8: MPEG-2 DLP benefit

IV. RESULTS
To establish the proposed methodology, we studied a multi-
threaded implementation of the MPEG-2, TM5 reference
video standard [mpeg.org]. The encoder was initially profiled
in order to identify the most compute-intensive parts at
function-level granularity. The complexity metric used was
the dynamic instruction count of the application when
compiled for a MIPS II-like CPU and executing on a single-
context simulator.
From Fig. 9, the most compute-intensive function was
identified as the inner loop of ME (DIST1). This function
computes the error of the current macro block over all macro

 5

blocks in the search window of the reference frame and its
complexity ranges from 52% to 73% of total dynamic
instruction count for a search window of 7 to 63 pels
respectively. The second most complex function was the
forward-DCT computation (FDCT) with a complexity metric
ranging between 2.1% and 21% of the total dynamic
instruction count. FullSearch is the wrapper function around
the low-level DIST1 and implements the default ME
algorithm. Its complexity ranged from 3.5% to 23.2% of the
total complexity. This is the level at which we applied our
threading technique as this allows the utilization of less
complex, algorithmic ME methods such as three-step search
[10] and four-step-search [11] in the parallelized encoder.
The performance of the threaded MPEG-2 encoder was
evaluated in a relatively slow, vertical-moving sequence
(Snowfall) and a very fast, circular-moving sequence
(Rotating City). We used Full-Search ME which is the default
algorithm in the reference MPEG-2 code.

5 1. 0 2 1. 1 3 . 5 2 4 . 5

6 1. 1 13 . 7 9 . 2 15 . 9

6 8 . 3 7 . 8 14 . 7 9 . 1

6 9 . 8 6 . 1 17 . 1 7 . 1

7 1. 7 3 . 3 2 1. 1 3 . 9

7 1. 9 2 . 1 2 3 . 5 2 . 4

0% 20% 40% 60% 80% 100%

P e rc e nt a ge C omp le xit y

6

14

24

30

46

62

MPEG2 T M5 (Full Search) Complexity distribution

DIST1

FDCT

FULLSEARCH

REMAINING

Figure 9: MPEG-2 TM5 Algorithm Profiling

Rotating City Sequence (25 frames)

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Processor Contexts (Threads)

%
 D

yn
am

ic
 In

st
ru

ct
io

n
C

ou
nt

7
15
25
31
47
81

Search
Range,

pel

Figure 10: Theoretical Performance (Circular Motion)

Fig 10 demonstrate a significant reduction in the complexity
metric both when the number of processor contexts is
increased and when the search window range is increased.
The complexity improves no further once the number of
processor contexts exceeds 32. Performance saturation at 95%
complexity-metric reduction occurs when a threaded loop is
executed only once. Results compare favorably with prior
studies which achieved a 65%-70% complexity-metric
reduction at a search range of 62 pels, for a 128-bit DLP
architecture

V. COMPARISON OF LIKE MINDED EDA TOOLS
Tools What is does What it does not
Incyte 1.Specification

Optimization System
2.Designer specification
oriented
3.Tool shows the
potential problems in the
design thus helping in
fast design time

1.Design Modelling in
not done
2.No Hardware-
software partitioning
3.Not really a integrator
platform based on any
Bus standard

Magilleium 1.Graphical Design
Entry based tool
2.Integration Platform
based on AMBA
3.Transactional RTL
Builder, full support for
SystemC
4.Good Verification
system in place

1.No option for design
modelling and design
exploration at the
highest level.
2.Basically choosing
blocks from the
existing library

Visual Elite 1.Graphical Design
Entry based
2.Performs Hardware-
Software partitioning
3.Helps in design using
specific Microprocessors

1.Not a design
specification capture
and design modelling
based tool

New flow,
specification
capture based
design modeling

1.Graphical Design
Entry
2.Design Specification
capture and architecture
exploration along with
direct choice from
legacy IP library.
3.Integration platform
with AMBA
4.Hardware-Software
partitioning.
5.Supports SystemC,C
RTL, SpecC

VI. CONCLUSION
We have demonstrated the new EDA flow proposal and
submitted preliminary results of the flow that we have
developed on two fronts.

1. UML diagrams being converted to the desirable
SLDL.

2. The simulation performance of the unified simulation
flow.

VII. FUTURE WORK
To integrate the tool flow so as to make the automation, we
have been able to demonstrate that such a tool flow is
conceivable.

• Future work will quantify on cycle effects of the bus-
based configuration as well as the benefit of local
scratchpad memories over the parametric Data
Cache.

• Complete the UML to SystemC in the same lines as
SpecC

• Develop the GUI for graphical design entry.
• Develop the automation as envisioned.

REFERENCES
1. M. Keating and P. Bricaud, “Reuse Methodology Manual for

System-on-Chip designs, 2nd Edition, Kluwer Academic
Publishers, Norwell 1999.

 6

2. F. Balarin et. al, “Hardware-Software Co-Design of Embedded
systems, The POLIS approach,” Kluwer Academic Publishers,
1997.

3. D. Gajski, J.Zhu et al. “SpecC: Specification Language and Design
Methodology”, Kluwer Academic Publishers, 2000.

4. Rainer Dömer, Daniel D. Gajski, Andreas Gerstlauer, “SpecC
Methodology for High-Level Modeling,” 9th EDP IEEE/DATC
Electronic Design Processes Workshop 2002.

5. Object Management Group, Omg unified modeling language
specification version 1.3, June 1999.

6. D. E. Lackey, “Applying Placement-based Synthesis for On-time
System-on-a-Chip Design”,IEEE Custom Integrated Circuits
Conference, 2000, pp. 121-124.

7. Object Management Group, Omg-xml metadata interchange
version 1.2, January 2002.

8. J. L. Diaz-Herrera, An isomorphic mapping for SpecC in UML,
Internet: http://ist.unibwmuenchen. de/GROOM/OMER-
2/papers/OMER2-

9. DiazHerrera.pdf, 2000, SPSU-CS TR 2000.
10. Sikora T, "MPEG Digital Video--Coding Standards," IEEE Signal

Processing Magazine, Vol. 14, No. 5, September 1997, pp. 82—
100.

11. Motion Picture Experts Group http://www.mpeg.org
12. V. A. Chouliaras, J. L. Nunez, Fabrizio. S. Rovati, Daniele Alfonso

‘A multi-standard video coding accelerator based on a vector
architecture’, Proceedings of the IEEE International Conference in
Consumer Electronics (ICCE 2005), Las Vegas, Nevada, USA

13. Shen K, Delp E J, "A parallel implementation of an MPEG
encoder: faster than real-time!", In Proceedings of the SPIE
Conference on Digital Video Compression: Algorithms and
Technologies, pp. 407-418, San Jose, California, 5-10 February.
1995.

14. “The Leon-2 processor User’s manual, XST edition, ver. 1.0.14”,
http://www.gaisler.com

15. Theo Ungerer, Borut Robič, Jurij Šilc, “A suervey of processorw
with explicit multithreading”, ACM Computing Surveys (CSUR),
Volume 35 Issue 1, March 2003

16. SimpleScalar LLC http://www.simplescalar.com/
17. Martinez J. F., Torrellas J “Speculative synchronization: applying

thread-level speculation to explicitly parallel application” ACM
SIGARCH Computer Architecture News, 30, 5, pp.18-29

18. Zeng and Liu “A new 3 step search Algorithm for Block Motion
Estimation”, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 4, No 4, Aug. 1994.

19. Lai-man Po and Wing-Chung Ma, “A novel four step-search
algorithm for fast block motion estimation”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, pp. 313-317,
1996.

http://ist.unibwmuenchen/
http://www.simplescalar.com/

	INTRODUCTION
	Unified Specification
	the simulator flow
	Core Simulation Engines
	Manual and Automatic Flows
	Embedded CPU Stencils
	Interconnect Stencils
	Streaming unit stencils

	Results
	Comparison of like minded EDA tools
	Conclusion
	Future Work

