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Abstract— We propose a new EDA tool flow which allows SoC 

architects to utilize an object-oriented approach in the 
development of streaming next generation SoC's including 
shared-memory, cache-coherent, single-chip multiprocessors. 
The tool will allow the visual definition of a complex computation 
kernel/SoC through instantiation of parametric IP such as 
processors, SDRAM controllers, DMA engines, on-chip buses, 
switch matrices and coherency directories, coprocessors, etc. 
Such IP is captured either at the specification level via UML, at 
the model level (SystemC, SpecC or ANSI C) or at the 
implementation level (RTL VHDL or Verilog). The unified 
environment then simulates the whole system during the 
architectural refinement phase and in the process, a near-optimal 
solution in terms of area, power and performance, is achieved. 
Finally, the output of the tool consists of a cycle-accurate 
executable model accompanied by the system RTL. 

I. INTRODUCTION 
We present preliminary results of a new EDA flow which 
unifies the specification capture and design modeling. 
Current, tools in the market namely Incyte, Mageillem, Visual 
Elite have provided solutions for specification optimization, 
graphical design entry and hardware-software partitioning to 
help designing of high performance IPs , but clearly there is 
still a lacking of a complete robust flow which helps the 
designers to take designs from specification to silicon and 
there is been a concrete effort to develop such a flow. 
We propose the unification of the specification capture, 
modeling and optimization of very high performing streaming 
system-on-chip designs through a unique combination of 
technologies. The overall flow can be classified into two parts 
namely the unified specification capture and the unified 
simulator.  
At present the flow is partially completed with work being 
done on the specification capture stage so as to accommodate 
the existing system level design languages (SLDL) such as 
SystemC and SpecC.  
We use UML as the front end specification capture format and 
convert the UML to a known SLDL like SystemC or SpecC. 
This translation is being performed using a unique 
combination of technologies and we have a prototype of 
translation kit from specification to SLDL(SpecC). 
Simultaneously work is being performed to accommodate 
SystemC, as it is becoming more widespread through tools 

such as SystemC complier. 

 
Affiliations 
Ashwin K.Kumaraswamy, V. A. Chouliaras and Tom R. Jacobs are with Dept 
of Electronic and Electrical Engineering, University of 
Loughborough,Loughborough,UK,email:ashwink.ctes2004b@cselondon.com 
J. L. Nunez-Yanez is with the Dept of Electronic Engineering, University of 
Bristol, Bristol, UK  

 

II. UNIFIED SPECIFICATION 
We propose a methodology that can transform UML models 
into a known System Level Design Language (SLDL) 
(SystemC/SpecC). In other words, UML model acts as a 
“wrapper” to the SLDL methodology. In UML each aspect of 
the SLDL’s methodology can be modelled and refined. The 
standardization of UML provides a base to revise the 
approaches to combine SLDL with object oriented analysis 
and design techniques (OOAD) techniques. One of the main 
directions for the joint application of SLDL and UML can be 
identified as modelling SLDL constructs in UML. This 
direction serves mainly the idea to make large SLDL 
specification better understandable and to give additional 
information (e.g. inheritance hierarchies, dependencies, 
pattern structures) for documentation purposes or as additional 
implementation information. UML is mapped onto the SpecC 
methodology. Uniqueness, to this new methodology, is that 
the UML representation of the system is separated from the 
underlying methodology. This helps in unifying the ways a 
system can be represented in UML without worrying about 
the way it will be implemented.  
A Hardware/Software co-designed system can be specified 
through the concepts of behaviours that interact via channels 
through ports and interfaces. There is a clear separation 
between computation and communication where behaviours 
model computation, and communication is modelled by using 
shared variables and/or channels [5]. Computation will consist 
of behaviours and their definitions. Communication will 
consist of ports, channels and interfaces. (Interfaces can also 
be used in the modelling of computation [3, 8].) 
 
Modeling of Computation 
In UML, the behaviours are modelled as classes. The local 
variables and the functions are also modeled within the class 
in their respective positions. A composite behaviour will 
contain instances of other behaviours. These compositions can 
be modeled using associativity. When breaking down 
behaviour into sub-behaviours, for structural hierarchy, 
generalizations can be used. There can be two types of 
hierarchy: structural and behavioral. Structurally, behaviours 
can be broken down 
into sub-behaviours and these into sub-behaviours, and so on. 
Designs are specified in a hierarchical manner using top-down 
functional decomposition (behavioral hierarchy). Both these 
hierarchies correspond to the concept of generalization and 
associativity in UML [5, 8]. 
 
Modeling of Communication 
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To model interfaces, UML’s interface notation is used. An 
interface is like an abstract class that consists of a set of 
method declarations. Interfaces can also be placed in a 
hierarchical fashion. Behaviours can, optionally, “realize” 
single or multiple interfaces. The channel or the behaviour 
that realize the interfaces should supply the definitions for the 
method declarations. 
The stereotype, <<channel>>, is used to represent a class as a 
channel. Channels are also modelled in the same manner as 
behaviour. Ports can be modelled in two ways. A port can 
either be a simple variable or another Interface or Class. In 
order to identify an object as a port, the <<port>> stereotype 
is used. If the port is declared as a simple variable of type 
type1, the variable declaration in UML will be as 
 
name: type1 <<port>> 
 
The <<port>> stereotype helps in identifying certain variables 
and also associations as ports, rather than local variables or 
instances respectively. 
 
Modeling of Execution 
The main problem in designing a system is the modeling of 
execution or show parallelism i.e., to represent behaviors that 
will be executing in sequence, parallel or pipelined. There are 
two different ways of specifying this. It is well known that in 
UML different views are meant for different activities of 
modeling. Thus, these considerations have to be mentioned in 
more than one of the views. In the static view (class diagram) 
we annotate these using stereotypes. This is very helpful, 
because the class diagram shows the static structure of the 
system. The problem of showing parallelism in the execution 
model can be solved through composition. Leaf behaviour, by 
itself will only perform its operations sequentially. If a 
component has to be modeled to execute in parallel or 
pipelined mode, then its behaviour can be further reduced into 
separate classes and its objects will be composed into the main 
component. These sub-behaviours can then be modeled to run 
in parallel or pipelined mode by specifying the mode of 
execution to the composite behaviour (main component). This 
can be done in the static view of the model. The actual 
execution of the composite behaviour can be modeled in 
detail, using State chart diagrams and/or Sequence diagrams. 
It was concluded that the State Machine view and the Activity 
view of the UML had enough notations specified to describe 
the internal behaviours of any component. Clocks can also be 
modeled as behaviours and can be made to generate events. 
These events can be used in other views to specify the timing 
characteristics of the system. 
 
Transformation of Static View 
Since SpecC is not an Object oriented language, there is no 
way of representing object hierarchies. Thus generalization is 
used to model behavioral hierarchy. In other words, 
behavioral hierarchy is modeled as a composition of multiple 
behaviours, according to the SpecC methodology. Therefore 
generalizations are transformed in the same manner as 
associations. A static view is shown in figure (1). 
 

 
 
Transformation of State Machine View 
The state machine view describes the dynamic behaviour of 
objects. Each object is treated as an isolated entity that 
communicates with the environment by detecting events and 
responding to them [7]. A state machine is a graph of states 
and transitions. Usually a state machine is attached to a class 
and describes the response of an instance of the class to events 
that it receives. 
A State Machine view is used to model the internal behaviour 
of an object of a class. A state machine contains states that are 
connected by transitions. Each state is defined as some unit of 
time in which the object stays and performs certain operations, 
whereas transitions are instantaneous, i.e. they occur at zero 
time. When an event occurs, it may cause the firing of a 
transition that takes the object to a new state. When a 
transition fires, an action attached to the transition may be 
executed. Theoretically, this execution period is zero. State 
machines are shown as a state chart diagram (Figure 2). 
 

 
Fig 1. Static View 

 
 

 
Fig 2: State Machine View 
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FIG 3. OVERALL FLOW 
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Fig 4: Internal flow path 

III. THE SIMULATOR FLOW 
Fig.3,4 depicts a high-level view of the proposed SoC Design 
Framework tool that we are currently developing. It consists 
of the input interface which can accept silicon and software IP 
in a number of forms including SystemC, standard HDL 
(VHDL and Verilog), cycle-accurate C conforming to the 
internal API and finally, standard C for the application. These 
elements are slotted in system-defined and used-defined 
‘Stencils’ from which on they are available for manual or 
automatic instantiation and design space exploration. 

A. Core Simulation Engines 
The primary simulation engine is based around a 

parameterized, multi-context, Instruction Set Simulator (MT-
ISS) derived from the Simple scalar computer architecture 
research tools. The default ISS has been re-architectured to 
allow the instantiation of a number of processor contexts and 
additional programmer-visible state for multi-processor (MP) 
synchronization. The simulator can be considered as an 
Exclusive-Read, Exclusive-Write (EREW) Parallel RAM 
(PRAM) machine. Architectural hooks are in place to allow 
interfacing to a cycle-accurate (CA) back-end. In this way, the 
ISS is dynamically producing (short) instruction traces which 
are (dynamically) consumed by the CA back-end. In the 
process, various parameters are evaluated such as the Clocks-
Per-Instruction (CPI) ratio per CPU, bus utilization, ICache 
and Dcache misses, pipeline stalls due to dependencies 
amongst others. 
The MT-ISS is one of the core simulator of the flow and 
drives both the programmable and non-programmable C-
based simulation models along with being used for software 
development.  
The second simulation engine is an industry-standard tool 
such as Mentor Graphics Modelsim. It interfaces to the cycle-
accurate infrastructure via the Foreign Language Interface 
(FLI) and allows for the modeling of legacy IP (VHDL, 
Verilog) and the primary output of the specification-capture 
front-end which is described in System-C. 
 

B. Manual and Automatic Flows 
There are two major flows (feedback loops) in the tool. The 

first is based around a GUI solution which is used to 
instantiate silicon IP blocks and application software 
components from the IP stencils on to the SoC canvas. The 
contents of those stencils can be ‘dragged’ onto the SoC area 
thus, incrementally building up and simulating the SoC model. 
We make no distinction as to whether the stencils contain 
synthesizable Silicon IP or CA models as the core simulators 
permit their arbitrary mix. This is of paramount importance in 
the modeling of highly-complex, future SoC architectures.  
Experimentation takes place after the SoC has been ‘drawn’ 
and it’s memory map established and populated. The feedback 
loop of Fig. 4 illustrates the manual or automatic refinement 
process, from SoC specification to performance closure and 
clearly illustrates the synergy between the MT-ISS, CA back-
end and industrial simulators in providing a unified 
framework for SoC modeling. 
A further route exists where the process is fully automated. In 
this case, a genetic-algorithm (GA) design space walker takes 
over the refinement process of the SoC once the initial 
allocation of programmable and non-programmable resources 
has happened. 

C. Embedded CPU Stencils 
The primary programmable engine used is based on an open-
source, 32-bit RISC CPU with an extended Instruction Set to 
allow for hardware barrier synchronization. In addition, the 
programmer’s model was extended to include a unique, non-
programmable, processor ID field which is used to identify the 
executing CPU to a software thread. 
As we are targeting primarily Data-Level-Parallelism (DLP), 
we have augmented the microarchitecture of the Leon-2 CPU 
to include a custom coprocessor channel in order to 
communicate to very high performance, tightly-coupled vector 
coprocessors. Typical transactions along this new interface are 
depicted in  the Fig 5 shows a coprocessor data operation on 
cycle 1 followed by a host-to-coprocessor register transfer on 
cycle 2. In cycle 3, a coprocessor register is requested by the 
RISC processor but due to internal stall conditions, data are 
made available one cycle later than the expected time (cycle 5 
instead of cycle 4). During that time, the main processor is 
held with the holdn signal. Finally, a second read operation, 
this time directed to Coprocessor 1, is initiated in cycle 6. 
Results are made available to the main pipeline in cycle 7. 

holdn
deasserted

1 2 3 4 5 6 7

data_op m vrc m vcr data_op m vcr

din

dout

dout

holdn asserted

data out valid

data into coproc

clk
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pcop_in.valid
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 Figure 5: Typical Coprocessor Channel Transactions 
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Figure 6: Scalar CPU and Vector Accelerator 

 
Fig. 6 shows the combined processor-coprocessor 
microarchitecture which includes an instance of a parametric 
vector accelerator implementing three custom instructions for 
the data-parallel sections of the MPEG-2 encoder attached to 
the scalar CPU which is a standard 5-stage design. From the 
diagram, instructions are fetched from the multi-way, set-
associative instruction cache and clocked into the instruction 
register. Decoding takes place in the DECODE stage with the 
RISC register file accessed at the falling edge of the clock. 
The bypassing logic in DECODE determines whether register 
file data or internally pipelined results are clocked in the ALU 
input registers. During EXEC, the ALU operation is 
performed and a virtual address is computed. Scalar data 
cache access takes place during DMEM/EXEC2 and scalar 
results return to the RISC pipeline during this cycle. Finally, 
results are clocked into an intermediate register prior to 
committing to the processor register file. The processor 
incorporates configurable data and instruction caches the 
former in a write-through configuration with no-write-allocate 
policy. Both caches are refilled over the on-chip bus via the 
bus controller.  

D. Interconnect Stencils 
We are targeting primarily the SoC modeling and 
implementation domain. We therefore have included support 
for multi-layer AMBA (AHB) based on the infrastructure 
provided by the Opensource CPU, augmented with the 
hardware synchronization primitives. A typical scenario of a 
paremetric, cache-coherent, SoC MP is depicted in Fig. 7. 

CPU 0

SDRAM
CTRL

CPU 1 CPU N-1

Periheral Bus 
Bridge

Barrier CTRL

Ba
rri

er
_0

Ho
ld_

0

Ba
rri

er_
1

Ho
ld_

1

Ba
rrie

r_
N-

1

Ho
ld

_N
-1

Irq Ctrl Ctrl Regs TimersUART

SDRAM Channel

AH
B 

I/F

AH
B 

I/F

AH
B 

I/F

Peripheral Bus

High Performance Bus

 
Figure 7: Typical bus based parametric SoC multiprocessor 

 
Further development is underway to allow for very high 

bandwidth interconnects (other than a hierarchy of buses) to 
be utilized. In this case, distributed coherency directories are 
utilized to ensure that the CPU caches remain consistent. 

E. Streaming unit stencils 
Prior research into statically-configurable (off-line 
configurable) vector/SIMD accelerators has successfully 
concluded that such units are of paramount importance in 
achieving performance closure in a consumer/media SoC. The 
complexity-metric reduction due to the vector instructiosn 
implemented via such tightly-coupled coprocessors for the 
case of MPEG-2 TMS reference software is as shown in Fig 
8.  
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Figure8: MPEG-2 DLP benefit 

IV. RESULTS 
To establish the proposed methodology, we studied a multi-
threaded implementation of the MPEG-2, TM5 reference 
video standard [mpeg.org]. The encoder was initially profiled 
in order to identify the most compute-intensive parts at 
function-level granularity. The complexity metric used was 
the dynamic instruction count of the application when 
compiled for a MIPS II-like CPU and executing on a single-
context simulator.  
From Fig. 9, the most compute-intensive function was 
identified as the inner loop of ME (DIST1). This function 
computes the error of the current macro block over all macro 
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blocks in the search window of the reference frame and its 
complexity ranges from 52% to 73% of total dynamic 
instruction count for a search window of 7 to 63 pels 
respectively. The second most complex function was the 
forward-DCT computation (FDCT) with a complexity metric 
ranging between 2.1% and 21% of the total dynamic 
instruction count. FullSearch is the wrapper function around 
the low-level DIST1 and implements the default ME 
algorithm. Its complexity ranged from 3.5% to 23.2% of the 
total complexity. This is the level at which we applied our 
threading technique as this allows the utilization of less 
complex, algorithmic ME methods such as three-step search 
[10] and four-step-search [11] in the parallelized encoder. 
The performance of the threaded MPEG-2 encoder was 
evaluated in a relatively slow, vertical-moving sequence 
(Snowfall) and a very fast, circular-moving sequence 
(Rotating City). We used Full-Search ME which is the default 
algorithm in the reference MPEG-2 code.  
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Figure 9: MPEG-2 TM5 Algorithm Profiling 
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Figure 10: Theoretical Performance (Circular Motion) 

 
Fig 10 demonstrate a significant reduction in the complexity 
metric both when the number of processor contexts is 
increased and when the search window range is increased. 
The complexity improves no further once the number of 
processor contexts exceeds 32. Performance saturation at 95% 
complexity-metric reduction occurs when a threaded loop is 
executed only once. Results compare favorably with prior 
studies which achieved a 65%-70% complexity-metric 
reduction at a search range of 62 pels, for a 128-bit DLP 
architecture  

V. COMPARISON OF LIKE MINDED EDA TOOLS 
Tools What is does  What it does not  
Incyte 1.Specification 

Optimization System 
2.Designer specification 
oriented 
3.Tool shows the 
potential problems in the 
design thus helping in 
fast design time 

1.Design Modelling in 
not done 
2.No Hardware-
software partitioning 
3.Not really a integrator 
platform based on any 
Bus standard 

Magilleium 1.Graphical Design 
Entry based tool 
2.Integration Platform 
based on AMBA 
3.Transactional RTL 
Builder, full support for 
SystemC 
4.Good Verification 
system in place 

1.No option for design 
modelling and design 
exploration at the 
highest level. 
2.Basically choosing 
blocks from the 
existing library 
 

Visual Elite 1.Graphical Design 
Entry based 
2.Performs Hardware-
Software partitioning 
3.Helps in design using 
specific Microprocessors  

1.Not a design 
specification capture 
and design modelling 
based tool 
 

New flow, 
specification 
capture based 
design modeling 

1.Graphical Design 
Entry 
2.Design Specification 
capture and architecture 
exploration along with 
direct choice from 
legacy IP library. 
3.Integration platform 
with AMBA 
4.Hardware-Software 
partitioning. 
5.Supports SystemC,C 
RTL, SpecC 

 

VI. CONCLUSION 
We have demonstrated the new EDA flow proposal and 
submitted preliminary results of the flow that we have 
developed on two fronts. 

1. UML diagrams being converted to the desirable 
SLDL. 

2. The simulation performance of the unified simulation 
flow. 

VII. FUTURE WORK 
To integrate the tool flow so as to make the automation, we 
have been able to demonstrate that such a tool flow is 
conceivable.  

• Future work will quantify on cycle effects of the bus-
based configuration as well as the benefit of local 
scratchpad memories over the parametric Data 
Cache.  

• Complete the UML to SystemC in the same lines as 
SpecC 

• Develop the GUI for graphical design entry. 
• Develop the automation as envisioned. 
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