

A Novel EDA flow for SoC Designs based on Specification Capture,
Block-clustering and Bus-partitioning

Ashwin K. Kumaraswamy*†, Ramalingam Kannan* and Indrajit Atluri†

*Institute for System Level Integration, Alba Centre, Alba Campus, Livingston, UK.

†School of Engineering and Electronics, University of Edinburgh, Edinburgh, UK.

Abstract

The RTL-to-GDSII tool suites are already being used in
order to carry out the logical or register transfer level
(RTL) design and synthesis, in tandem with floor
planning, placement and routing, to expedite the process
of ASIC design production. This paper proposes a novel
EDA flow for SoC designs based on the block clustering
and bus-partitioning techniques which starts at the
design specification capture level finally giving the
required SoC. Conventionally an UML (Unified
Modelling Language) can be used to model reusable
components at higher levels of abstraction and System
level design languages (SLDL) such as SpecC, SystemC
etc., provide a platform for generating “executable
specification” that describe the functionality of the
system along with performance, cost and other
constraints, without including prematurely developed
implementation details. Since the UML is not executable
and the functionality depicted in the model cannot be
verified for accuracy, the authors present a system
modeling aspect, which binds these two technologies and
provides a platform for interoperability between UML
and SLDLs. The correctness of the specification is
checked at this stage. Further, the methodology explained
in this paper clusters both the macro and micro blocks,
based on the communication traffic between each of the
blocks, and performs intermediate floor planning to
facilitate designers to estimate the area of the design, to
reduce the avoidable increase in power consumption of
the chip prior to placement and routing by assuring the
placement of the clustered macro-blocks near the power
grids and to have a timing efficient system.

1 Introduction

In the context of todays increasingly complex SoC's,
designs consist of embedded software running on
multiple processor cores, connected to memory and
peripherals. As complexity grows, an increasing
proportion of the software and the hardware peripherals
constitute a SoC device. To cope with these ever
increasing requirements the design abstraction level
needs to be precise and informatic.

Recent advances in semiconductor technology facilitate
the integration of many million gates on a single chip and

result in the integration of Systems on Chip (SoC).
Typical examples of SoC applications can be found in the
multimedia domain. In those applications, generally,
large amounts of data must be processed in parallel.
However, performing such processing by software
running on a high-performance processor or only by
hardware is not usually efficient except for a few specific
cases. An optimal combination of hardware and software
and an optimal system partitioning into hardware and
software is most desirable.

Studies into SoCs have been made for a long time. The
first methodology is the one of Intellectual Properties (IP)
re-use [1]. The waterfall and the V models for SoC
design delve into interface synthesis which is required in
building a system based on the IP. In this methodology,
however, there are limitations and few issues to be
addressed. A methodology of partitioning a system into
hardware and software directly from its specification
description called the co-synthesis has been studied as
another co-design methodology [2]. In conventional co-
synthesis, performance degradation was observed, since
the target-architecture was composed of general-purpose
processors and a bus. To address the above deficiencies
studies of how to achieve global optimization by avoiding
ending up only in local optimization at the time of
hardware/software partitioning is presently taking place.

Since SoCs are often highly cost-sensitive, optimization
of silicon area has the same level of importance as design
efficiency to accelerate the SoC development process.
Conventional approaches for hardware-software
partitioning focused mainly on EDA aspects, such as
algorithm and design flow improvements, which are
however not sufficient for the development of cost-
efficient SoCs. In this paper the authors developed a
flexible flow which can be entered at any stage of the
design process. This new EDA methodology for SoC
design is based on specification capture, system
partitioning, communication trafficking based block
clusterered synthesis and floorplanning. This
methodology envisages a proposal where the
specification is captured using UML and based on the
specification capture system partitioning is performed
using SpecC [3,4] as a System Level Design Language
(SLDL). Further, the advantages of the specification
capture and system partitioning techniques in tackling

problems which arise during SoC design development by
employing communication trafficking based block
clustered synthesis and floor-planning is explicitly
discussed.

2 Background and Related Work

The need for co-designing hardware and software has
long been pointed out for the development of SoCs and
co-design tools have been developed by many projects.
Co-design can be roughly classified into two approaches,
software oriented partitioning and hardware oriented
partitioning. The difference between the two is whether
the functional specification model is written as a software
model or hardware model.

Most methods are focussing on hardware/software
partitioning techniques to transform functional
specifications into optimal system architecture. Studies
of performing optimal hardware/software partitioning by
applying proprietary algorithm or methodologies are
under way. The method aiming at automatically
generating a software model that can be cross-compiled
and a hardware model that can be synthesized at a high
level by applying the hardware/software partitioning
algorithm is called co-synthesis. One of the merits of co-
synthesis is that a hardware model and a software model
can be partitioned with little user intervention. However
this feature reduces visibility to the designer and hence
controllability. Some co-synthesis methods take the
phased approach, where certain stages are defined in the
process to create optimal system architecture from
functional specifications, in which designers can refine
the functional specification. The merit of this approach is
that architectural limitations can be revealed at
intermediate stages thus identifying specification
problems early that would otherwise come to the surface
only in later stages.

As stated above, many methods for system development
have been described in the literature. But applying those
methods to actual SoC designs is still difficult due to
inherent limitations.

One limitation is that the design process is based on
target- architecture with general-purpose processors and a
bus on which ROM, RAM, hardware accelerators, co-
processors, etc. are allocated. It is very hard to estimate
execution cycles for the hardware units, because the bus
is shared by various data transfers.

It is preferable to use a model that is executable on the
target-architecture as specification, because reusability of
existing specification models is improved. Further, it is
preferable that the specification model is a software
model that can be cross-compiled. The reason for that is
that refinement of the software model will directly

influence the performance of the final system. In
conventional co-design methods, a specification model
cannot be cross-compiled because languages such as
expanded C language or proprietary languages were used
such that the specification model can be described in both
a software model and hardware model. Under critical
conditions, the difference between the evaluation result
where hardware/software partitioning of the specification
model was done and the one where only an execution
model was used is considerable and it is very likely that a
time consuming repetition of the partitioning process is
required.

Finally, despite of recent remarkable developments
of EDA tools, hardware design is still a time-consuming
task. That is why it is important that a system simulation
is fast and accurate. To that end, not only the verification
on the RTL (co-verification) level but also on a higher
level model such as C-based (co-simulation) must be
done. However, in co-simulation methods, where basic
blocks of conventional co-design projects are used, the
achievable accuracy is not quite satisfactory.

3 Contemporary Challenges encountered in SoC

Designs

As designs enter DSM technology of 0.25µ and below,
the design community is confronted with several
challenges. These challenges can be broadly be grouped
into three categories:
1. Timing closures
2. Circuit capacity
3. Physical properties

(1) Timing closures: Conventional design flows use
statistical wire load models to estimate metal
interconnects for pre-layout timing analysis. For
geometrics of 0.25µ and above, the new approach
presented in this paper meets timing goals and constraints
at the pre-layout stage, could be implemented to achieve
same results after physical design. At DSM technology
level, interconnect delays become significant and must be
accurately estimated if timing closure is to be achieved
[6].

Statistical wire load models are inaccurate because they
represent a statistical value based on block size. The
distribution of wire load at the mean value can vary
greatly so that the interconnects on the tail of the
distribution are significantly underestimated.

(2) Capacity: With DSM technology it is feasible to
integrate >10million gates onto a single IC using 0.18µ or
below technologies which introduces significant capacity
challenges to many of the tools in the design flow. To

manage this level of complexities DSM designs adopt the
following solutions:
(a) Hierarchical Designs: Hierarchical design flows
support multiple levels within the design.
(b) Design Re-use: Design reuse integrates pre-existing
blocks with newly authored ones.

(3) Physical Properties: At DSM levels of technology,
several physical effects need to be accounted for, within
the design flow. The evolution of DSM results in fewer
device geometrics, more layer of metal interconnect,
lower power supply voltages, millions of devices within a
single IC, lower device thresholds and higher clock
frequencies. These factors cause signal integrity issues
and design integrity issues to be of greater concern than
at more relaxed geometrics.

Coupled with technological problems at DSM level, SoC
designs have to contend with larger abstraction of
integration of hardware and software components.

SoC design is principally software development - HDL &
embedded code. Without a quality approach to design, we
are in serious trouble. Design processes exists to
produce systems of consistent quality, reliably deliver
systems meeting complex behavioral requirements,
predict when systems will be complete, predict cost of
development and production, identify milestones during
development to facilitate mid-course correction, enable
efficient team collaboration. SoC design is principally
software development - HDL & embedded code. Without
a quality approach to design, we are in serious trouble.
Different projects follow different models. But
experience has shown that the following are important:

• A well-defined requirements capture process.
• Prototyping & Modelling is needed at each level of
abstraction in the design phase.
• Executable models are preferred to textual models.
• Verification should be built in at each stage, and early
modelling should drive later phases of test.
• Feedback between stages is needed to refine the design.

A SoC design methodology should contain these features.
For all these reasons we propose a new EDA tool flow
for SoC methodology.

4 Proposed Design Flows

In case of traditional design flows, meaningful floor
planning cannot take place until a gate level net list is
available; this requires extremely computationally
intensive and timing efficient logic synthesis or
physically aware synthesis and in-place optimization.

Recently proposed CAD methodologies have dealt with
timing closure problems, by expressing interconnect
delay to the logic synthesis tool using wire load models,
which estimates a nets capacitive load as a function of the
fan-out of the net’s driving pin and the gate utilization
within the chip area that the wire load model represents.
These methodologies deal with nothing but a customized
wire load models which in reality is the iterative form of
wire load models to attack timing closure problem.

Our present methodology is composed of three stages and
a block diagram of the entire SoC flow is shown in
Figure (3).

a. UML to SpecC
b. Design Entry level and verification
c. RTL to optimised hardware

4.1 UML-SLDL

We propose a methodology that can transform UML
models into a known System Level Design Language
(SLDL) (in this case SpecC). In other words, UML model
acts as a “wrapper” to the SLDL’s methodology. In UML
each aspect of the SLDL’s methodology can be modelled
and refined. This has various advantages. The
standardization of UML provides a base to revise the
approaches to combine SLDL with object oriented
analysis and design techniques (OOAD) techniques. One
of the main directions for the joint application of SLDL
and UML can be identified as modelling SLDL
specifications with UML. This direction serves mainly
the idea to make large SLDL specification better
understandable and to give additional information (e.g.
inheritance hierarchies, dependencies, pattern structures)
for documentation purposes or as additional
implementation advice. UML is mapped onto the SpecC
methodology. Uniqueness, to this new methodology, is
that the UML representation of the system is separated
from the underlying methodology. This helps in unifying
the ways a system can be represented in UML without
worrying about the way it will be implemented. The
reason behind using this approach is that the UML model
can be ported seamlessly to any methodology. Thus we
have to first understand how a system can be modelled in
UML. Although there can be numerous ways of
describing a system in UML, only one of these methods
can be chosen. This way the code-generation
(transformation) phase will be made easy.

A Hardware/Software co-designed system can be
specified through the concepts of behaviours that interact
via channels through ports and interfaces. There is a clear
separation between computation and communication
where behaviours model computation, and
communication is modelled by using shared variables

and/or channels. Keeping this in mind, the first step is to
decide on the modelling of the different aspects of a
system, i.e. computation and communication.
Computation will consist of behaviours and their
definitions. Communication will consist of ports,
channels and interfaces. (Interfaces can also be used in
the modelling of computation.)

Modelling of Computation
In UML, the behaviours are modelled as classes. The
local variables and the functions are also modelled within
the class in their respective positions. A composite
behaviour will contain instances of other behaviours.
These compositions can be modelled using associativity.
When breaking down behaviour into sub-behaviours, for
structural hierarchy, generalizations can be used.
There can be two types of hierarchy: structural and
behavioral. Structurally, behaviours can be broken down
into sub-behaviours and these into sub-behaviours, and so
on. Designs are specified in a hierarchical manner using
top-down functional decomposition (behavioral
hierarchy). Both these hierarchies correspond to the
concept of generalization and associativity in UML [5].

Modelling of Communication
To model interfaces, UML’s interface notation is used.
An interface is like an abstract class that consists of a set
of method declarations. Interfaces can also be placed in a
hierarchical fashion. Behaviours can, optionally, “realize”
single or multiple interfaces. The channel or the
behaviour that realize the interfaces should supply the
definitions for the method declarations.

The stereotype, <<channel>>, is used to represent a
class as a channel. Channels are also modelled in the
same manner as behaviour.

Ports can be modelled in two ways. A port can either be a
simple variable or another Interface or Class. In order to
identify an object as a port, the <<port>> stereotype is
used. If the port is declared as a simple variable of type
type1, the variable declaration in UML will be as

name: type1 <<port>>

The <<port>> stereotype helps in identifying certain
variables and also associations as ports, rather than local
variables or instances respectively.

Modelling of Execution
The main problem in designing a system is the modelling
of execution or show parallelism i.e., to represent
behaviors that will be executing in sequence, parallel or
pipelined. There are two different ways of showing this.
It is well known that in UML different views are meant
for different activities of modelling. Thus, these

considerations have to be mentioned in more than one of
the views. In the static view (class diagram) we annotate
these using stereotypes. This is very helpful, because the
class diagram shows the static structure of the system.
The problem of showing parallelism in the execution
model can be solved through composition. Leaf
behaviour, by itself will only perform its operations
sequentially. If a component has to be modelled to
execute in parallel or pipelined mode, then its behaviour
can be further reduced into separate classes and its
objects will be composed into the main component.
These sub-behaviours can then be modelled to run in
parallel or pipelined mode by specifying the mode of
execution to the composite behaviour (main component).
This can be done in the static view of the model. The
actual execution of the composite behaviour can be
modelled in detail, using Statechart diagrams and/or
Sequence diagrams.
It was concluded that the State Machine view and the
Activity view of the UML had enough notations specified
to describe the internal behaviours of any component.
Clocks can also be modelled as behaviours and can be
made to generate events. These events can be used in
other views to specify the timing characteristics of the
system.

Transformation of Static View
Since SpecC is not an Object oriented language, there is
no way of representing object hierarchies. Thus
generalization is used to model behavioral hierarchy. In
other words, behavioral hierarchy is modelled as a
composition of multiple behaviours, according to the
SpecC methodology. Therefore generalizations are
transformed in the same manner as associations. A static
view is shown in figure (1).

Transformation of State Machine View
The state machine view describes the dynamic behaviour
of objects. Each object is treated as an isolated entity that
communicates with the environment by detecting events
and responding to them [7]. A state machine is a graph of
states and transitions. Usually a state machine is attached
to a class and describes the response of an instance of the
class to events that it receives.
A State Machine view is used to model the internal
behaviour of an object of a class. A state machine
contains states that are connected by transitions. Each
state is defined as some unit of time in which the object
stays and performs certain operations, whereas transitions
are instantaneous, i.e. they occur at zero time. When an
event occurs, it may cause the firing of a transition that
takes the object to a new state. When a transition fires, an
action attached to the transition may be executed.
Theoretically, this execution period is zero. State
machines are shown as a state chart diagram (Figure 2).
The different components of a State diagram are:

1. State
2. Terminal States
3. Transitions
Now we propose a methodology which aims of solving
the timing closure problem by extracting information at
the highest level of abstraction i.e. during or along with
the RTL stage.

4.2 Design Verification

Design verification starts in concurrence to the creation
of specification as system specification drive the
verification strategy.

In our proposed flow we can check the specification
correctness at the UML stage. If the specification laid
down seems incorrect we can input the correct UML
model. The next stage is system behavior verification
whose validation leads to suitable hardware and software
architecture. Then the partitioning of software design into
hardware and software is performed. Software level
verification is token based and is not cycle accurate as
yet.

RTL Verification:
RTL verification usually is logic simulation for
functionality check. The RTL code is verified for syntax
errors.
Software Verification:
Software verification is performed using soft prototype
(emulation of the software).
Netlist Verification:
The RTL is synthesized and gate level netlist is
generated. Netlist is verified using equivalence checking
tool with RTL code as reference and netlist as
implementation design.
Timing Verification:
Timing verification can be verified at various stages of
the chip plan phase to ensure that the design meets the
specifications and requirements.
Physical Verification:
Physical verification includes the DRC, layout versus
schematic and SI checks.

Specman Elite generates test automatically by capturing
rules from the design specifications. Automation involves
generating function tests; this is the widely used
verification language.

4.3 RTL and Software Code to Optimized Hardware

The RTL to final optimized hardware transition
comprises of the following steps:

4.3.1 RTL: The logic functionality of the system is
designed using either of the two HDLs based on requisite
specification.
4.3.2 Intermediate Floor Planning: Once the RTL is
ready, we observe the RTL simulation and infer the
following information:

a. communication traffic between the blocks and sub-

blocks
b. switching activity in the blocks
c. Gate count or area information from previous

knowledge.

Based on the inferences from the RTL simulation an
intermediatory floor plan is performed.

Block Clustering and Communication Traffic Estimation:
The modulus operandi of this floor plan is we create a
physical placing of the blocks and their sub-blocks
depending of the communication traffic between them.
This communication traffic information which comprises
of the number of transactions, amount of data
communicated, communication delays is collected from
the design model or by simulation of functional
specification. The higher the communication traffic the
closer the blocks are placed and same is looked in the
case of the address and data bus. Once the blocks and
sub-blocks which are critical are placed closer and
mapped we perform power planning by drawing power
grids closer to the blocks which are critical with respect
to the communication traffic. The power planning is
based on the assumption that the components that have
greater communication traffic requires more power
compared to other components.

Some of the methods for estimation of the
communication traffic between blocks are:
(a) Using UML: By inspection of UML we can determine
the communication interaction between blocks and the
requisite theoretical timing between the blocks.
(b) Switching activity: Through RTL simulation we can
estimate the communication interaction between the
blocks by which we can estimate the communication
traffic between blocks.
(c) Previous Experience: Through observation based on
experience with previous designs.

4.3.3 Synthesis: During synthesis we can either perform
synthesis of the whole design or perform block level
synthesis to garner the information on timing and area of
the components.
4.3.4 Final Floor Planning: Floor planning stage
performs the complete mapping of the components using
the floor plan map created earlier.

The remaining part of the design flow consists of the
following steps similar to those in a conventional design
methodology.
4.3.5 Clock Tree Generation
4.3.6 Global Place and Route
4.3.7 Delay calculation and SDF back annotation
4.3.8 Final routing
4.3.9 Optimized hardware
4.3.10 Software Synthesis: Software FSM is implemented
by mapping it into software structure along with the Real
time operating system.
4.3.11 Software FSM: The reactive behaviour is
synthesized into two stages.
(a) Implement & optimize the desired behaviour in a high

level processor independent representation which is
similar to the control or data flow graphs.

(b) Control/data flow graphs are translated to C code and
compiled to implement and optimize on a
microcontroller.

5 Advantages

The proposed flow offers the flexibility to perform
specification capture based partitioning. The timing
information can be matched more realistically compared
to the traditional EDA flows. Reduction in power
consumption could be pre-planned while carrying out the
intermediate floor-planning. This methodology is
technology independent and one can enter the design
process at any given stage of the design flow. The flow
can be used as a plug and play EDA tool which makes it
a flexible, yet concrete and complete SoC design flow.

6 Results

A methodology which transforms UML models into a
known System Level Design Language (SLDL) (in this
case SpecC) has been presented and implemented
successfully. Further, in the SoC flow, an intermediate
floor-planning is presented which facilitates SoC
designers to estimate the area of the design and to reduce
the avoidable increase in power consumption of the chip
prior to placement and routing thereby reducing the
problem of timing closure which is crucial for present
and future SoC design.

7 Conclusion

A new EDA flow for a SoC design methodology based
on specification capture, block-clustering and bus-
partitioning is presented. The challenges faced by today’s
designers especially in the production of SoC designs
have been examined. Finally the advantages of using this
flow for future and contemporary SoC designs have been
emphasized.

References

[1] M. Keating and P. Bricaud, “Reuse Methodology

Manual for System-on-Chip designs, 2nd Edition,
Kluwer Academic Publishers, Norwell 1999.

[2] F. Balarin et. al, “Hardware-Software Co-Design of
Embedded Systems, The POLIS approach,” Kluwer
Academic Publishers, 1997.

[3] D. Gajski, J.Zhu et al. “SpecC: Specification
Language and Design Methodology”, Kluwer
Academic Publishers, 2000.

[4] Rainer Dömer, Daniel D. Gajski, Andreas
Gerstlauer, “SpecC Methodology for High-Level
Modeling,” 9th EDP IEEE/DATC Electronic Design
Processes Workshop 2002.

[5] Object Management Group, Omg unified modeling
language specification version 1.3, June 1999.

[6] D. E. Lackey, “Applying Placement-based
Synthesis for On-time System-on-a-Chip Design”,
IEEE Custom Integrated Circuits Conference, 2000,
pp. 121-124.

[7] Object Management Group, Omg-xml metadata
interchange version 1.2, January 2002.

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Balarin%2C Felice/102-9780017-7413705

behaviour B1 (Bus comm)
{
P1 p1;
}

behaviour P1 ()
{
}
interface Bus ()
{
int read ();
}

 <<Port>> comm

B1-P1 p1

B1

Software C

<<Interface>>

Bus

read() : int

 Start

Start_p1 start_p2

p1_done p2_done

exit

behaviour B1 ()
{
…
void main () {
pipe {

p1 .main(); p2 .main();
}
return;
}
…
}

p1.main p2.main

Figure (1): Static View.

Figure (2): State Machine View.

Translators UML Modelling
Tool

Partition
Information

System Behaviour
Executable Model

Partition Tool

Software FSM
Hardware RTL

Communication
Traffic information

between blocks

Intermediate Floor
Planning based on

block level
clustering

Synthesis

Timing and Area
information

Final Netlist

Final Floor Planning

Global Routing and Placement based
on the floor planned

Clock Tree Generation

Statistical Timing Analysis

Optimized Hardware

Board Level Prototyping

OS based software
synthesis

Task Synthesis

Software Code

Figure (3): The proposed SoC Design Flow.

	*Institute for System Level Integration, Alba Centre, Alba Campus, Livingston, UK.
	†School of Engineering and Electronics, University of Edinburgh, Edinburgh, UK.
	Abstract
	Introduction
	Background and Related Work
	The need for co-designing€hardware and software has long been pointed out for the development of SoCs and co-design tools have been developed by many projects. Co-design can be roughly classified into two approaches, software oriented partitioning and ha
	Contemporary Challenges encountered in SoC Designs
	Proposed Design Flows

	Modelling of Computation
	Modelling of Communication
	Modelling of Execution
	Transformation of Static View
	Transformation of State Machine View
	
	Advantages
	Results
	Conclusion

	References

