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Abstract 
 
The RTL-to-GDSII tool suites are already being used in 
order to carry out the logical or register transfer level 
(RTL) design and synthesis, in tandem with floor 
planning, placement and routing, to expedite the process 
of ASIC design production. This paper proposes a novel 
EDA flow for SoC designs based on the block clustering 
and bus-partitioning techniques which starts at the 
design specification capture level finally giving the 
required SoC. Conventionally an UML (Unified 
Modelling Language) can be used to model reusable 
components at higher levels of abstraction and System 
level design languages (SLDL) such as SpecC, SystemC 
etc., provide a platform for generating “executable 
specification” that describe the functionality of the 
system along with performance, cost and other 
constraints, without including prematurely developed 
implementation details. Since the UML is not executable 
and the functionality depicted in the model cannot be 
verified for accuracy, the authors present a system 
modeling aspect, which binds these two technologies and 
provides a platform for interoperability between UML 
and SLDLs. The correctness of the specification is 
checked at this stage. Further, the methodology explained 
in this paper clusters both the macro and micro blocks, 
based on the communication traffic between each of the 
blocks, and performs intermediate floor planning to 
facilitate designers to estimate the area of the design, to 
reduce the avoidable increase in power consumption of 
the chip prior to placement and routing by assuring the 
placement of the clustered macro-blocks near the power 
grids and to have a timing efficient system.  
 
1 Introduction 
 
In the context of todays increasingly complex SoC's, 
designs consist of embedded software running on 
multiple processor cores, connected to memory and 
peripherals. As complexity grows, an increasing 
proportion of the software and the hardware peripherals 
constitute a SoC device. To cope with these ever 
increasing requirements the design abstraction level 
needs to be precise and informatic.  

Recent advances in semiconductor technology facilitate 
the integration of many million gates on a single chip and 

result in the integration of Systems on Chip (SoC).  
Typical examples of SoC applications can be found in the 
multimedia domain. In those applications, generally, 
large amounts of data must be processed in parallel.  
However, performing such processing by software 
running on a high-performance processor or only by 
hardware is not usually efficient except for a few specific 
cases. An optimal combination of hardware and software 
and an optimal system partitioning into hardware and 
software is most desirable.   

Studies into SoCs have been made for a long time.  The 
first methodology is the one of Intellectual Properties (IP) 
re-use [1].  The waterfall and the V models for SoC 
design delve into interface synthesis which is required in 
building a system based on the IP. In this methodology, 
however, there are limitations and few issues to be 
addressed.  A methodology of partitioning a system into 
hardware and software directly from its specification 
description called the co-synthesis has been studied as 
another co-design methodology [2].  In conventional co-
synthesis, performance degradation was observed, since 
the target-architecture was composed of general-purpose 
processors and a bus. To address the above deficiencies 
studies of how to achieve global optimization by avoiding 
ending up only in local optimization at the time of 
hardware/software partitioning is presently taking place.  

Since SoCs are often highly cost-sensitive, optimization 
of silicon area has the same level of importance as design 
efficiency to accelerate the SoC development process.  
Conventional approaches for hardware-software 
partitioning focused mainly on EDA aspects, such as 
algorithm and design flow improvements, which are 
however not sufficient for the development of cost-
efficient SoCs.  In this paper the authors developed a 
flexible flow which can be entered at any stage of the 
design process. This new EDA methodology for SoC 
design is based on specification capture, system 
partitioning, communication trafficking based block 
clusterered synthesis and floorplanning.  This 
methodology envisages a proposal where the 
specification is captured using UML and based on the 
specification capture system partitioning is performed 
using SpecC [3,4] as a System Level Design Language 
(SLDL). Further, the advantages of the specification 
capture and system partitioning techniques in tackling 



 

 

problems which arise during SoC design development by 
employing communication trafficking based block 
clustered synthesis and floor-planning is explicitly 
discussed. 

2 Background and Related Work 
 
The need for co-designing hardware and software has 
long been pointed out for the development of SoCs and 
co-design tools have been developed by many projects. 
Co-design can be roughly classified into two approaches, 
software oriented partitioning and hardware oriented 
partitioning.  The difference between the two is whether 
the functional specification model is written as a software 
model or hardware model.  

Most methods are focussing on hardware/software 
partitioning techniques to transform functional 
specifications into optimal system architecture.  Studies 
of performing optimal hardware/software partitioning by 
applying proprietary algorithm or methodologies are 
under way. The method aiming at automatically 
generating a software model that can be cross-compiled 
and a hardware model that can be synthesized at a high 
level by applying the hardware/software partitioning 
algorithm is called co-synthesis.  One of the merits of co-
synthesis is that a hardware model and a software model 
can be partitioned with little user intervention.  However 
this feature reduces visibility to the designer and hence 
controllability.  Some co-synthesis methods take the 
phased approach, where certain stages are defined in the 
process to create optimal system architecture from 
functional specifications, in which designers can refine 
the functional specification.  The merit of this approach is 
that architectural limitations can be revealed at 
intermediate stages thus identifying specification 
problems early that would otherwise come to the surface 
only in later stages.  

As stated above, many methods for system development 
have been described in the literature. But applying those 
methods to actual SoC designs is still difficult due to 
inherent limitations.  

One limitation is that the design process is based on 
target- architecture with general-purpose processors and a 
bus on which ROM, RAM, hardware accelerators, co-
processors, etc. are allocated.  It is very hard to estimate 
execution cycles for the hardware units, because the bus 
is shared by various data transfers. 

It is preferable to use a model that is executable on the 
target-architecture as specification, because reusability of 
existing specification models is improved.  Further, it is 
preferable that the specification model is a software 
model that can be cross-compiled.  The reason for that is 
that refinement of the software model will directly 

influence the performance of the final system.  In 
conventional co-design methods, a specification model 
cannot be cross-compiled because languages such as 
expanded C language or proprietary languages were used 
such that the specification model can be described in both 
a software model and hardware model.  Under critical 
conditions, the difference between the evaluation result 
where hardware/software partitioning of the specification 
model was done and the one where only an execution 
model was used is considerable and it is very likely that a 
time consuming repetition of the partitioning process is 
required.  

Finally, despite of recent remarkable developments 
of EDA tools, hardware design is still a time-consuming 
task.  That is why it is important that a system simulation 
is fast and accurate.  To that end, not only the verification 
on the RTL (co-verification) level but also on a higher 
level model such as C-based (co-simulation) must be 
done.  However, in co-simulation methods, where basic 
blocks of conventional co-design projects are used, the 
achievable accuracy is not quite satisfactory.  

 
3 Contemporary Challenges encountered in SoC 

Designs 
 
As designs enter DSM technology of 0.25µ and below, 
the design community is confronted with several 
challenges. These challenges can be broadly be grouped 
into three categories: 
1. Timing closures 
2. Circuit capacity 
3. Physical properties 
 
(1) Timing closures: Conventional design flows use 
statistical wire load models to estimate metal 
interconnects for pre-layout timing analysis. For 
geometrics of 0.25µ and above, the new approach 
presented in this paper meets timing goals and constraints 
at the pre-layout stage, could be implemented to achieve 
same results after physical design. At DSM technology 
level, interconnect delays become significant and must be 
accurately estimated if timing closure is to be achieved 
[6]. 
 
Statistical wire load models are inaccurate because they 
represent a statistical value based on block size. The 
distribution of wire load at the mean value can vary 
greatly so that the interconnects on the tail of the 
distribution are significantly underestimated. 
 
(2) Capacity: With DSM technology it is feasible to 
integrate >10million gates onto a single IC using 0.18µ or 
below technologies which introduces significant capacity 
challenges to many of the tools in the design flow. To 



 

 

manage this level of complexities DSM designs adopt the 
following solutions: 
(a) Hierarchical Designs: Hierarchical design flows 
support multiple levels within the design.  
(b) Design Re-use: Design reuse integrates pre-existing 
blocks with newly authored ones.  
 
(3) Physical Properties: At DSM levels of technology, 
several physical effects need to be accounted for, within 
the design flow. The evolution of DSM results in fewer 
device geometrics, more layer of metal interconnect, 
lower power supply voltages, millions of devices within a 
single IC, lower device thresholds and higher clock 
frequencies. These factors cause signal integrity issues 
and design integrity issues to be of greater concern than 
at more relaxed geometrics. 
 
Coupled with technological problems at DSM level, SoC 
designs have to contend with larger abstraction of 
integration of hardware and software components.  
 
SoC design is principally software development - HDL & 
embedded code. Without a quality approach to design, we 
are in serious trouble. Design processes exists to 
produce systems of consistent quality, reliably deliver 
systems meeting complex behavioral requirements, 
predict when systems will be complete, predict cost of 
development and production, identify milestones during 
development to facilitate mid-course correction, enable 
efficient team collaboration. SoC design is principally 
software development - HDL & embedded code. Without 
a quality approach to design, we are in serious trouble. 
Different projects follow different models. But 
experience has shown that the following are important: 
 
•  A well-defined requirements capture process. 
•  Prototyping & Modelling is needed at each level of 
abstraction in the design phase. 
•  Executable models are preferred to textual models. 
•  Verification should be built in at each stage, and early 
modelling should drive later phases of test. 
•  Feedback between stages is needed to refine the design. 
 
A SoC design methodology should contain these features.  
For all these reasons we propose a new EDA tool flow 
for SoC methodology. 
 
4 Proposed Design Flows 
 
In case of traditional design flows, meaningful floor 
planning cannot take place until a gate level net list is 
available; this requires extremely computationally 
intensive and timing efficient logic synthesis or 
physically aware synthesis and in-place optimization. 
 

Recently proposed CAD methodologies have dealt with 
timing closure problems, by expressing interconnect 
delay to the logic synthesis tool using wire load models, 
which estimates a nets capacitive load as a function of the 
fan-out of the net’s driving pin and the gate utilization 
within the chip area that the wire load model represents. 
These methodologies deal with nothing but a customized 
wire load models which in reality is the iterative form of 
wire load models to attack timing closure problem. 

Our present methodology is composed of three stages and 
a block diagram of the entire SoC flow is shown in 
Figure (3). 

a. UML to SpecC 
b. Design Entry level and verification  
c. RTL to optimised hardware 
 
4.1 UML-SLDL 
 
We propose a methodology that can transform UML 
models into a known System Level Design Language 
(SLDL) (in this case SpecC). In other words, UML model 
acts as a “wrapper” to the SLDL’s methodology. In UML 
each aspect of the SLDL’s methodology can be modelled 
and refined. This has various advantages. The 
standardization of UML provides a base to revise the 
approaches to combine SLDL with object oriented 
analysis and design techniques (OOAD) techniques. One 
of the main directions for the joint application of SLDL 
and UML can be identified as modelling SLDL 
specifications with UML. This direction serves mainly 
the idea to make large SLDL specification better 
understandable and to give additional information (e.g. 
inheritance hierarchies, dependencies, pattern structures) 
for documentation purposes or as additional 
implementation advice. UML is mapped onto the SpecC 
methodology. Uniqueness, to this new methodology, is 
that the UML representation of the system is separated 
from the underlying methodology. This helps in unifying 
the ways a system can be represented in UML without 
worrying about the way it will be implemented. The 
reason behind using this approach is that the UML model 
can be ported seamlessly to any methodology. Thus we 
have to first understand how a system can be modelled in 
UML. Although there can be numerous ways of 
describing a system in UML, only one of these methods 
can be chosen. This way the code-generation 
(transformation) phase will be made easy. 
 
A Hardware/Software co-designed system can be 
specified through the concepts of behaviours that interact 
via channels through ports and interfaces. There is a clear 
separation between computation and communication 
where behaviours model computation, and 
communication is modelled by using shared variables 



 

 

and/or channels. Keeping this in mind, the first step is to 
decide on the modelling of the different aspects of a 
system, i.e. computation and communication. 
Computation will consist of behaviours and their 
definitions. Communication will consist of ports, 
channels and interfaces. (Interfaces can also be used in 
the modelling of computation.) 
 
Modelling of Computation 
In UML, the behaviours are modelled as classes. The 
local variables and the functions are also modelled within 
the class in their respective positions. A composite 
behaviour will contain instances of other behaviours. 
These compositions can be modelled using associativity. 
When breaking down behaviour into sub-behaviours, for 
structural hierarchy, generalizations can be used. 
There can be two types of hierarchy: structural and 
behavioral. Structurally, behaviours can be broken down 
into sub-behaviours and these into sub-behaviours, and so 
on. Designs are specified in a hierarchical manner using 
top-down functional decomposition (behavioral 
hierarchy). Both these hierarchies correspond to the 
concept of generalization and associativity in UML [5].  
 
Modelling of Communication 
To model interfaces, UML’s interface notation is used. 
An interface is like an abstract class that consists of a set 
of method declarations. Interfaces can also be placed in a 
hierarchical fashion. Behaviours can, optionally, “realize” 
single or multiple interfaces. The channel or the 
behaviour that realize the interfaces should supply the 
definitions for the method declarations.  
 
The stereotype, <<channel>>, is used to represent a 
class as a channel.  Channels are also modelled in the 
same manner as behaviour. 
 
Ports can be modelled in two ways. A port can either be a 
simple variable or another Interface or Class. In order to 
identify an object as a port, the <<port>> stereotype is 
used. If the port is declared as a simple variable of type 
type1, the variable declaration in UML will be as 
 

name: type1 <<port>>
 
The <<port>> stereotype helps in identifying certain 
variables and also associations as ports, rather than local 
variables or instances respectively. 
 
Modelling of Execution 
The main problem in designing a system is the modelling 
of execution or show parallelism i.e., to represent 
behaviors that will be executing in sequence, parallel or 
pipelined. There are two different ways of showing this. 
It is well known that in UML different views are meant 
for different activities of modelling. Thus, these 

considerations have to be mentioned in more than one of 
the views. In the static view (class diagram) we annotate 
these using stereotypes. This is very helpful, because the 
class diagram shows the static structure of the system. 
The problem of showing parallelism in the execution 
model can be solved through composition. Leaf 
behaviour, by itself will only perform its operations 
sequentially. If a component has to be modelled to 
execute in parallel or pipelined mode, then its behaviour 
can be further reduced into separate classes and its 
objects will be composed into the main component. 
These sub-behaviours can then be modelled to run in 
parallel or pipelined mode by specifying the mode of 
execution to the composite behaviour (main component). 
This can be done in the static view of the model. The 
actual execution of the composite behaviour can be 
modelled in detail, using Statechart diagrams and/or 
Sequence diagrams. 
It was concluded that the State Machine view and the 
Activity view of the UML had enough notations specified 
to describe the internal behaviours of any component. 
Clocks can also be modelled as behaviours and can be 
made to generate events. These events can be used in 
other views to specify the timing characteristics of the 
system. 
 
Transformation of Static View 
Since SpecC is not an Object oriented language, there is 
no way of representing object hierarchies. Thus 
generalization is used to model behavioral hierarchy. In 
other words, behavioral hierarchy is modelled as a 
composition of multiple behaviours, according to the 
SpecC methodology.  Therefore generalizations are 
transformed in the same manner as associations. A static 
view is shown in figure (1). 
 
Transformation of State Machine View 
The state machine view describes the dynamic behaviour 
of objects. Each object is treated as an isolated entity that 
communicates with the environment by detecting events 
and responding to them [7]. A state machine is a graph of 
states and transitions. Usually a state machine is attached 
to a class and describes the response of an instance of the 
class to events that it receives.  
A State Machine view is used to model the internal 
behaviour of an object of a class. A state machine 
contains states that are connected by transitions. Each 
state is defined as some unit of time in which the object 
stays and performs certain operations, whereas transitions 
are instantaneous, i.e. they occur at zero time.  When an 
event occurs, it may cause the firing of a transition that 
takes the object to a new state. When a transition fires, an 
action attached to the transition may be executed. 
Theoretically, this execution period is zero. State 
machines are shown as a state chart diagram (Figure 2). 
The different components of a State diagram are: 



 

 

1. State 
2. Terminal States 
3. Transitions 
Now we propose a methodology which aims of solving 
the timing closure problem by extracting information at 
the highest level of abstraction i.e. during or along with 
the RTL stage. 
 
4.2 Design Verification 
 
Design verification starts in concurrence to the creation 
of specification as system specification drive the 
verification strategy. 
  
In our proposed flow we can check the specification 
correctness at the UML stage. If the specification laid 
down seems incorrect we can input the correct UML 
model. The next stage is system behavior verification 
whose validation leads to suitable hardware and software 
architecture. Then the partitioning of software design into 
hardware and software is performed. Software level 
verification is token based and is not cycle accurate as 
yet. 
 
RTL Verification: 
RTL verification usually is logic simulation for 
functionality check. The RTL code is verified for syntax 
errors. 
Software Verification: 
Software verification is performed using soft prototype 
(emulation of the software). 
Netlist Verification: 
The RTL is synthesized and gate level netlist is 
generated. Netlist is verified using equivalence checking 
tool with RTL code as reference and netlist as 
implementation design. 
Timing Verification: 
Timing verification can be verified at various stages of 
the chip plan phase to ensure that the design meets the 
specifications and requirements. 
Physical Verification: 
Physical verification includes the DRC, layout versus 
schematic and SI checks. 
 
Specman Elite generates test automatically by capturing 
rules from the design specifications. Automation involves 
generating function tests; this is the widely used 
verification language. 
 
4.3 RTL and Software Code to Optimized Hardware 
 
The RTL to final optimized hardware transition 
comprises of the following steps: 
 

4.3.1 RTL: The logic functionality of the system is 
designed using either of the two HDLs based on requisite 
specification.  
4.3.2 Intermediate Floor Planning: Once the RTL is 
ready, we observe the RTL simulation and infer the 
following information: 
 
a. communication traffic between the blocks and sub-

blocks 
b. switching activity in the blocks 
c. Gate count or area information from previous 

knowledge. 
 

Based on the inferences from the RTL simulation an 
intermediatory floor plan is performed.  
 
Block Clustering and Communication Traffic Estimation: 
The modulus operandi of this floor plan is we create a 
physical placing of the blocks and their sub-blocks 
depending of the communication traffic between them. 
This communication traffic information which comprises 
of the number of transactions, amount of data 
communicated, communication delays is collected from 
the design model or by simulation of functional 
specification. The higher the communication traffic the 
closer the blocks are placed and same is looked in the 
case of the address and data bus. Once the blocks and 
sub-blocks which are critical are placed closer and 
mapped we perform power planning by drawing power 
grids closer to the blocks which are critical with respect 
to the communication traffic. The power planning is 
based on the assumption that the components that have 
greater communication traffic requires more power 
compared to other components.  
 
Some of the methods for estimation of the 
communication traffic between blocks are: 
(a) Using UML: By inspection of UML we can determine 
the communication interaction between blocks and the 
requisite theoretical timing between the blocks. 
(b) Switching activity: Through RTL simulation we can 
estimate the communication interaction between the 
blocks by which we can estimate the communication 
traffic between blocks. 
(c) Previous Experience: Through observation based on 
experience with previous designs. 
 
4.3.3 Synthesis: During synthesis we can either perform 
synthesis of the whole design or perform block level 
synthesis to garner the information on timing and area of 
the components. 
4.3.4 Final Floor Planning: Floor planning stage 
performs the complete mapping of the components using 
the floor plan map created earlier.  



 

 

The remaining part of the design flow consists of the 
following steps similar to those in a conventional design 
methodology. 
4.3.5 Clock Tree Generation 
4.3.6 Global Place and Route 
4.3.7 Delay calculation and SDF back annotation  
4.3.8 Final routing 
4.3.9 Optimized hardware 
4.3.10 Software Synthesis: Software FSM is implemented 
by mapping it into software structure along with the Real 
time operating system.  
4.3.11 Software FSM: The reactive behaviour is 
synthesized into two stages.  
(a) Implement & optimize the desired behaviour in a high 

level processor independent representation which is 
similar to the control or data flow graphs. 

(b) Control/data flow graphs are translated to C code and 
compiled to implement and optimize on a 
microcontroller. 
 

5 Advantages 
 
The proposed flow offers the flexibility to perform 
specification capture based partitioning. The timing 
information can be matched more realistically compared 
to the traditional EDA flows. Reduction in power 
consumption could be pre-planned while carrying out the 
intermediate floor-planning. This methodology is 
technology independent and one can enter the design 
process at any given stage of the design flow. The flow 
can be used as a plug and play EDA tool which makes it 
a flexible, yet concrete and complete SoC design flow.  
 
6 Results 
 
A methodology which transforms UML models into a 
known System Level Design Language (SLDL) (in this 
case SpecC) has been presented and implemented 
successfully. Further, in the SoC flow, an intermediate 
floor-planning is presented which facilitates SoC 
designers to estimate the area of the design and to reduce 
the avoidable increase in power consumption of the chip 
prior to placement and routing thereby reducing the 
problem of timing closure which is crucial for present 
and future SoC design. 
 
7 Conclusion 
 
A new EDA flow for a SoC design methodology based 
on specification capture, block-clustering and bus-
partitioning is presented. The challenges faced by today’s 
designers especially in the production of SoC designs 
have been examined. Finally the advantages of using this 
flow for future and contemporary SoC designs have been 
emphasized. 
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behaviour B1 (Bus comm)
{
P1 p1;
}

behaviour P1 ( )
{
}
interface Bus ( )
{
int read ( );
}
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behaviour B1 ()
{
…
void main () {
pipe {

p1 .main(); p2 .main();
}
return;
}
…
}

p1.main p2.main

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1): Static View. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2): State Machine View. 
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Figure (3): The proposed SoC Design Flow. 
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