Beyond P-Cell and Gate-Level Assumptions

Rajesh Prabhakar

Technical Marketing Engineer, Calibre Design-to-Silicon rajesh_prabhakar@mentor.com

Design Complexity Drivers

Time-to-market: Process roadmap acceleration Consumerization of electronic devices Aggressive adoption of 130 and 90 nm technologies

Complex systems: uCs, DSPs, HW/SW, SW protocol stacks, RTOS's On-Chip busses Digital/Analog IPs AMS circuitry now found in 78% of SoC designs

Nanometer effects:

crosstalk electro migration wire delays copper wires RET, DFM

Feature Scaling: Friend & Foe

More Functionality per Chip Network Processors Wireless Comm Audio/Video Systems Imagers Memory

Affordable ICs

Smaller Feature Size: 50% of Annual IC Functional Cost Reduction Sematech, IC Insights

P SUBSTRATE, DOPING NA

Processors

Faster Devices & Faster Systems

Feature Scaling: Drives Physical Design Complexity

Source: ITRS Roadmap 1999

New Physical Effects of Nanometer Processes

'New' RC Effects

Planarity Fill

Parasitic Inductance

Copper Processing Issues

REALISTIC CASE

Advanced Device Parameters

Actual vs. Intended Device Construction

RP, P-Cell, Apr 2004

Nanometer Silicon Modeling Defined

- nSiM = Post-Layout Circuit Model
 - Accurately accounts for silicon electrical effects
- Two Parts
 - Intentional device models
 - Account for actual parameters in layout
 - Interconnect models (parasitics)
 - Account for nm silicon effects
- Essential Characteristics
 - Include all data relevant to target analysis
 - Be easily & rapidly generated
 - **—** Provide compact, tractable representation
 - Readily feed post-layout analysis tools

How Does Drain/Source Area Effect Output Frequency?

Transistor #1

Transistor #2

Same W & L but, different drain/source area

Results/Comparisons

	Ideal VCO	VCO w/Diffusio n	VCO w/C	VCO w/RC	VCO w/RCC
f_o	2.4119 GHz	2.34 GHz	2.203 GHz	2.135 GHz	2.13 GHz
Error	-	3%	8.6%	11.4%	11.7%
PN (dBc/Hz)	-124	-122	-121.6	-110	-103

Drain/Source Area's Effect Comparison

Accuracy: Device Extraction

- Transistors, Resistors, Capacitors, Inductors, Varactors
- User-Defined Devices
- Parameter Extraction
 - W, L, AS, AD, PS, PD
 - User Defined Parameter
- Device Reduction
 - User defined parameter reduction
 - Accurately extract intentional devices in the circuit!

Read parameter method If text = L1_abc Then T = 1.5 Calibre Physical Parameter Extraction

$$T = NumCorners*90 / 360$$

Case	Open-loop	Calibre
Original	T = 1.5	T = 1.5
Modified	T = 1.5	T = 1.75

New Parameters For Nanometer Devices

Length Of Diffusion

- **AKA Stress Effect (Stress Induced Mobility Modulation)**
- Needed in LVS, PEX, and Simulation
 - Already exists in Calibre LVS/xRC, Eldo
- **Difficult to Capture in Schematic**

Extensive Analysis Required to Catch Nanometer Design Closure Issues

Nanometer Analysis Requires Nanometer Silicon Modeling

Calibre Nanometer Silicon Modeling Accounts for New Physical Effects

- Expanded set of parasitic elements
- Complex nanometer interactions
- Copper processing effects and compensation
- Actual vs. intended intentional device parameters

New Analysis Demands

Traditional Analysis required accurate parasitic info
 – RC, RCC, now RLC

New Paradigm

- Accurate Parasitics annotated to Accurate Geometric info
 - X,Y Locations
 - Width, Length
 - Layer
 - # of contacts
- Current Density Measurements
 - Hierarchical

RP, P-Cell, Apr 2004

Impact of In-Die Variation

Previously, fixed cross-sections could be assumed

Height was fixed

— Fixed Sheet Resistance for each interconnect layer

Copper process <130 nm, manufacturing impacts cross-section

Resistance now a function of width/spacing of conductors

Loop Inductance Benefits

Loop inductance:

– Smaller netlists; Improved simulation performance

Enabling Post-layout Analysis

Calibre Nanometer Silicon Modeling: Enabling Analysis to Prevent Respins

- Accurately Addressing Nanometer Effects
 - Resistance, Capacitance, Inductance
- Intentional Device Models Reflect Layout
 Tight integration between LVS & xRC
- Performance & Capacity to Handle Large Designs
- **Compact Si Models Enable Analysis of Large Designs**
- Mixed-Signal Silicon Model Composition
 Single Flow for Transistor & Gate Level Extraction

RP. P-Cell. Apr 2004

www.mentor.com