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Microprocessor Evolution

4004 Processor | Itanium® 2 Processor
Year 1971 2004
Transistors 2300 9592 M
Process 10 um 0.13 um
Die size 12 mm? 432 mm?
Frequency 108 kHz 1.7 GHz
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The experts look ahead

Moore’s Law - 1965

Cramming more components
onto integrated circuits

With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as

many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and L Fairchild
division of Fairehild Camera and Instrument Corp.

The future of integrated electronics is the fuure of eleciron-
ics itself. The advantages of i tion will bring about &
proliferation of electronics, pushing this science mto many

arated circuits will lead 1o such wonders as home
compsters—or & least lerminals connected o a central com-
puter— automatic contrals for utomohiles, and personal
portable communications equipm Ihe electronic wrist-
watch needs only a display 1o be feasible today.

But the potential lies in the production of large
syatems. In welephone communication egrated circuits
in digital filters will separate channels on multiplex. equip-
ment Integrated circuits will also switch telephone circuits
and perform data processi

Compsters will be more powerful, and will be oranized
in completely dilferent wavs, For example, memaries builo
of integrated electronics may be distributed throughout the

The author

Dr. Gordon E. Moore is one of
the new breed of electranic
engineers, schooled in the
physical sciences rather Bhun in
alectronics. He samed a B.S.
degree in chemistry from the
Univarsity of Callformia and a
Ph.D. degres in physical
Ghemistry from the California
Institute of Technclogy. Ha was
one of the founders of Fairchild
Semicanductor and has basn
director of the research and
development laboratories since
558

muchine mstead of bemg concentrated in o central unit. In
addition, the mmproved relibility made possible by integerted
circuits will allow the constroction of lager processing units,
Machines similar to those m existense o will be baill at
lower costs and with faster tum-around,
Present and fulure

By integrated electronics, | mean all the o techs
nol which are referred o a5 microelectronics today as
well as any additional ones that result in electronies fine-
tions supplied w the user as irmeducible s, Thess wech-
nologies were first investigated in the late 1950, The ob-

5 o ministurize elec ies equipment Lo include in-
ereasingly complex electronic functions in limited space with
mum weighl. Several approaches evolved, mcluding
wssembly technigues for individual compenents, thin-

film structures and semiconductor imtegroted cirouits,

Each approach evolved rapidly and converzed so that
ench borrowed technigues from another. Many researchers
believe the way of the future to bea combination of the vari-
ous approaches

The advocates of semiconductor integrated circuitry are
already using the improved characteristics of thin-film resis
tors by applying such films directly © ctive semicondie-
tor substrate,  Those sdvocaling a 1echnology based upon

re developing sephisticated techniques lor the attach-
ictive semiconducior devices to the passive filmar-

Both approaches have worked well and are being used
in equipment today

Elestronies, Volume 38, Number §, April 18, 1065
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Past Forecasts

“Heavier-than air flying machines are not possible”
Lord Kelvin, 1895

“l think there is a world market for maybe five computers”
IBM Chairman Thomas Watson, 1943

“640,000 bytes of memory ought to be enough for anybody”™
Bill Gates, 1981

“The Internet will catastrophically collapse in 1996”
Robert Metcalfe

mteI@
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Moore’s Law Continues
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Heading Toward 1 Billion Transistors By 2005
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Processor Frequency Trend
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* Frequency doubles each generation
. « Number of gates per clock reduces by 25%
mteI@
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Processor Power Trend
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 Lead processor power increases every generation
* Process scaling provides higher performance at lower power

mteI@
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Voltage Scaling Is Slowing Down
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« Assumptions: 15mm die, 1.5x frequency increase per generation
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Power Density Trend

I Leakage Pwr

I Active Pwr

0.25u 0.18u 0.13y
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Active and Leakage Power Trends
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Bus Bandwidth (MB/sec)

|

Bus Bandwidth Trend
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Memory and I/O Bandwidth Are Essential For High Performance
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Planar CMOS Transistor Scaling

90nm Process
2003
65nm Process
2005 45nm Process
2007

32nm Process
2009

Lgate — 50nm 30nm 20nm 15nm
Production Prototype Prototype Prototype

 Intel R&D groups are exploring aggressive scaling of
conventional planar CMOS transistors

InU Source: Robert Chau
1]
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Depleted Substrate Transistor

Single-gate DST Tri-gate DST
Intd@'” _ ©2004 Intel Corp. our:;g: 1e6 g
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Lithography Challenges

Feature size

4
7

Lithography
Wavelength

248nm

13nm (EUVL) =e5uuap

10 1 1 1 1 ]
'’89 ’91 93 95 97 99 01 03 05 07 09 11

intel.

Initial Production
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Extreme Ultraviolet Lithography

* EUV lithography uses extremely short wavelength
light (20x shorter than today’s lithography processes)
— Visible light — 400 to 700 nm
— DUV lithography — 193 and 248 nm
— EUV lithography — 13 nm

World’s First 6-inch EUV ETS Mask

©2004 Intel Corp. Page 18



Process Fluctuations

Die-to-Die Fluctuations Within-Die Fluctuations

Systematic Random

—""I“I TR I
T 1-’|1'| lf'iili' 1 1
S ‘-I!.“ .l‘!ili 1| ) I 1' Lihb‘ ], iﬂ.‘r
v

\[K L
A h{lb ‘LL
i "“iitl"xb'*

Resist Thickness Lens Aberrations Random Placement
of Dopant Atoms

L
Inu Source: K. Bowman, et.al., ISSCC’2001
@
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P, V, T Variations

* Process
— Die-to-die variation
— Within-die variation
— Static for each die
* Voltage
— Chip activity change
— Current delivery—RLC
— Dynamic: ns to 10-100us
— Within-die variation
 Temperature
— Activity & ambient change
— Dynamic: 100-1000us
intel@ — Within-die variation
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Impact on Design Methodology

A
=
_ 3| Due tg variations in:
_c§ Vdd, nd Temp
Path Delay - >
O 3 | E— | Delay
A . Deterministic
7, % S %4
= = : C
8 a P 9 robabilistic
45 = : D 10X variation
H ++ s L ~50% total power
- >
Delay Target Delay Target E> Leakage Power

» Major paradigm shift from deterministic design to
probabilistic / statistical design
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Number of Metal Layers

Metal Layers

N

© O D B D D O D

Technology Generation (um)
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90nm Generation Interconnects
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Source: M. Bohr
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On-chip Interconnect Trend

Feature size (nm)

Relative
delay 250 180 130 90 65 45 32
100 -
] Global interconnect
1 without repeaters
10 -
- Global interconnect
i with repeaters
1 -
. Local interconnect (M1,2)
. —u
i Gate delay (FO4)
Source: ITRS, 2001
0.1

* Local interconnects scale with gate delay

* Intermediate interconnects benefit from low-k material
- * Global interconnects do not scale
intgal.
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Skin Effect
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« Edge frequency is 5-9x the clock frequency

mteI@
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Capacitive vs. Inductive Coupling

e

S —— —

« Capacitive Coupling
— Due to electric field

— “Near” field effect

— Measures resistance
to a voltage change

* Inductive Coupling
— Due to magnetic field
— “Far” field effect

— Measures resistance
to a current change

— Frequency
dependent

©2004 Intel Corp. Page 26



Inductive Noise
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* Inductance of VLSI metal lines is becoming
important at operating frequencies above 1GHz

* Need accurate R,L,C extraction tools
In e . ©2004 Intel Corp. Page 27
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Inductance Effect
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Noise Analysis

Charge-Sharing Line Coupling

P%
Cint'@ $ Chode

Leakage

>y &

A

Propagated Noise

Vout

|

Original Circuit

Vin

«Each circuit broken into equivalent models for various noise sources
— Models charge-sharing, coupling, leakage, supply noise, contention
— Calculated noise propagated to next stage to model amplification
*Macro-block results rolled up to fullchip analysis

— Abstracted noise from block level are collected for the full chip and
s combined with coupling analysis
intgl. eSS
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Itanium® 2 Processor Power Charts

7%

130nm Itanium® 2

L5y Processor 6M 1.5GHz

» Maintain the same 130W
power envelope
— 50% frequency increase
— 2X larger L3 cache
— Leakage increased 3.5X

I dynamic power

/0 power

core leakage/static
B cache leakage

» Aggressive management
of dynamic power
— Reduced clock loading
— Reduced contention power

— L3 cache power
management

Lt
intgl.
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Active Power Reduction

Reduce switched capacitance: Technology scaling:

* Minimize loading from * Dynamic voltage scaling
diffusion, wire, gate » Supply voltage scaling is

» Use more efficient layout slowing down
techniques * Thresholds don’t scale

\

C, V4 f,,

P= a
/ \

Reduce switching activity: Reduce clock frequency:

» Conditional execution * Use parallelism
 Conditional clocking *Less pipeline stages
 Conditional precharge » Use double-edge flip-flops

e Turn off inactive blocks

intel.
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Clock Gating

0 »
En
K ol
REG =€

« Save power by gating the clock when data activity is low
* Requires detailed logic validation

mtel@
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Active Power Management

Max Performance
Power Scaling /

range ~ 3—4

Increasing
Powera V3 Performance

Increasing Efficiency
(Freqg/Power)

Most efficient
operating point

Power

Minimum
Operatingv
Voltage

Deep Sleep
Quick Start

Frequency

« Voltage-frequency scaling with active thermal feedback
« Multi-operating states from high performance to deep sleep
¢ Power management reduces average and peak power

mteI@
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Xscale V/F Adjustment
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Exploit Memory Power Efficiency

100 /
o .
Power L°9'°f
Density 10
(W/cm?)
1 l l
0.25 0.18 0.13

» Static memory has 10X lower active power density

* Lower leakage than logic
* On-die cache provides higher bandwidth and lower latency

intel.
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SRAM Cell Size Scaling

100 -
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SRAM Cell Size (um?)
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05 035 025 018 013 0.09 0.065

Technology Generation (um)

« SRAM cell size continues to scale ~0.5x per generation
* Larger caches can be incorporated on die

©2004 Intel Corp. Page 37



Server Processors On-Die Cache
Size Trends
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* Increasing cache size is a power efficient
way to improve server performance

|nteI@
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Leakage Continues to Increase

10,000
0.09um
= 1,000 0.13um
= 0.18pm
g 10 0.25um
5
— 10 |

30 40 50 60 70 80 90 100 110

Temp (C)
* Design issues:
— Dynamic circuits may fail
— Need to guarantee burn-in functionality

L
intal.
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Subthreshold Leakage Trend
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High-K Gate Dielectric
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Leakage Reduction Techniques

Body Bias

Vbp
vdd

Jﬂv'

_|
1
-Ve\ Vbn

2-10X reduction

intel.

Stack Effect
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Equal Loading

Vr

_|

]

\

0

©2004 Intel Corp.

Sleep Transistor
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Logic Block

;

2-1000X reduction
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Leakage is a Strong Function

of Voltage
100
£ 130nm process
« 80 -
x
o
- 60 - Subthreshold
Q@ 40 - Leakage
5 N
£ 20 -
O
Z 0 l l l l

0 0.3 0.6 0.9 1.2 1.5
Voltage (V)

e Subthreshold and gate leakage reduce
with lower supply voltage

intgal.
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Standby Leakage Reduction:
Sleep Transistor Design

e Motivation: Cut off power
supply in sleep-mode

e Insert sleep transistor
between main supply and
functional unit’s supply rails

e Latches tied to main supply
rails to retain state

e EDA tools needed to:

e Size sleep transistor and
distribute in layout

e Model the timing impact

intgal.
©2004 Intel Corp.
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Burn-in Tolerant Dynamic Circuits

Normal Mode Keeper Effective Burn-in Keeper

\
Burn-in Enable -D\‘ql:TPKB

\
N
Clock —4 PK:PPOQ_L Min.
sized t

Pull Down $

N-tree
6 A. Alvandpour et al, 2002 CICC

- Leakage sensitive circuits not functional at burn-in
» Larger keepers increase delay at nominal condition
» Conditional keeper enables functional burn-in

mteI@
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Microprocessor Package Evolution

» 2003 - Pentium® 4 Processor

1971 — 4004 Processor

— 478-pin organic package

— Flip-chip attach

pin ceramic package

-16

— Wire bond attach

Int9I® — 750kHz I/O

Page 48

—200MHz, quad-pumped I/O
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Thermal Resistance

0.4

0.3

0.2

Package Thermal Resistance

0.1 1 1 1
180nm 130nm 90nm

Technology Generation

intgal.
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Power Density Models

Power Map On-Die Temperature

250
200
150

100

Heat Flux (W/cm2)

» With increasing power density and large on-die caches,
detailed, non-uniform power models are required

-
intgal.
©2004 Intel Corp.
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Thermal Modeling

Simulated power density Infrared Emission
Microscope measurement

D. Genossar and N. Shamir “Intel® Pentium® M Processor Power Estimation,
in Budgeting, Optimization and Validation”, Intel Technology Journal 5/2003
td ®
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Thermal Protection Features

§ lyiode ETM
© e +> Throttle
8_ Trip | S
GE, Alort Thermal
- >Trip
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Time Diode
‘9 Reference

intal.
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Metal Reliability Verification

» Metal routing validated for
self-heating (SH) and
electromigration (EM)

— Macro-blocks verified through
every geometry for SH/EM

— Fullchip EM correct-by-
construction

— Fullchip SH verified through
all geometries
* Thermal map used at the
macro-block level to tighten
constraints

— Hottest areas of die need to
meet higher standards

intel.

= H

4 el

3 ﬁ

E

A - E

g,

,"'"lllllllll adl

©2004 Intel Corp.

Page 53




intel.

Agenda

* Microprocessor Design Trends
* Process Technology Directions
* Active Power Management

* Leakage Reduction Techniques
 Thermal Modeling

« Call to Action

« Summary

©2004 Intel Corp.

Page 54



Call to Action

 CAD tools must enable power and leakage reduction
techniques with high productivity

— All design flows must be power and leakage aware

— Need support for multiple transistors flavors (Le and Vt)
and sleep devices for leakage reduction

 CAD tools must comprehend process, temperature and
voltage variations - worst casing is not practical

— Major shift from deterministic to probabilistic design

— Design optimization must consider parameter variations
e Simultaneous optimization of power, timing and noise

— Need accurate R,L,C extraction tools

— Explore multiple solutions for noise problems

Il‘ltel@
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Summary

Moore’s Law will continue for at least another decade
— 2X transistors growth per technology generation
— 30nm and smaller transistors realized
Power and leakage are a significant challenge
— Exploit memory power efficiency - larger caches
— Dynamic voltage and frequency adjustment
— Circuit techniques (clock gating, sleep transistors)

EDA industry’s job is to enable designers to keep
pace with Moore’s law

— Deliver tools and methodologies for increasingly
complex designs

— Focus on leakage and active power reduction

©2004 Intel Corp. Page 56
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