
A Methodology to Remove Unwanted Delays in Outputs and Pre and
Post-Synthesis Simulation Mismatches in Implicit State Machines

Shahriyar M. Rizvi

American International University-Bangladesh, Dhaka, Dhaka-1213, Bangladesh,

shahriyar@aiub.edu

Jerry J. Cupal

University of Wyoming, Laramie, WY 82071, USA, jcupal@uwyo.edu

Abstract

 When a Finite State Machine (FSM) is modeled in
implicit style Verilog HDL, values of inputs just after
active edges of the system clock determine the next states
of the machine. Synthesis tools interpret this feature by
inserting D-type flip-flops at the present state signals and
the outputs. This interpretation delays these signals by
one clock cycle as compared to an FSM synthesized from
explicit style Verilog HDL code. In synchronous design,
this delay is both unwanted and unnecessary. In certain
cases, this delay creates pre and post-synthesis
simulation mismatches. A technique has been developed
to remove these flip-flops after synthesis, and prior to
place and route. This allows designers to produce
implicit FSMs that deliver correct functionality both
before and after synthesis and operate with the same
speed as an explicit FSM. Since implicit style has a
higher level of abstraction, this modification process can
provide a designer a more abstract and perhaps, a better
method to model and implement an FSM.

1 Introduction

In digital hardware design, designers often partition
hardware into FSMs and datapath components. It is
possible to write synthesizable Verilog HDL code for an
FSM in two ways: explicit style and implicit style [1],
[2], [3], [4], [5].

Explicit style of coding models the operation of an FSM
as the combined operation of its combinational and
sequential components. That is why it requires modeling
these two components separately. In this coding style,
and in actual hardware, values of inputs just prior to
active edges of the system clock determine the next states
of the machine. Here, a Mealy output can glitch. These
features allow explicit style to accurately model the
architecture and the operation of the synthesized FSM.

In contrast, implicit style closely models the behavior of
an FSM. Here, there is no separation between
combinational and sequential logic. In fact, implicit code
hides the details of the hardware architecture from the
designer’s view [1], [2], [3], [4], [5].

In implicit style, values of inputs just after active edges of
the system clock determine the next states of the
machine. Synthesis tools interpret this feature through
adding D type flip-flops to present state signals and
outputs. This delay is neither necessary nor desired for
realizing many design specifications. Since all the outputs
are registered, a Mealy output cannot glitch, in this case.
Furthermore, when an implicit FSM has to control certain
datapath elements (i.e. counter), this delay can cause pre
and post-synthesis simulation mismatches.

A technique has been developed to remove these output
flip-flops after synthesis, and prior to place and route, in
Xilinx 3.1i ISE design environment. This paper gives the
details of this modification process. Basically it consists
of identifying the flip-flops in a text file coming out of
the synthesis tool (FPGA Express) and replacing them
with simple buffers. Post-route simulations show that a
“modified” implicit FSM preserves the correct
functionality even after synthesis and operates just like an
explicit FSM---without the delays in the outputs.

2 The Behavior of an Example Mealy FSM Coded

In Explicit Style

A Design Specifications and Algorithm
A simple FSM can be designed to illustrate the behavior
of explicit style Verilog HDL. This FSM waits for an
external input Pb to go high in an idle “state” and when it
does, the FSM proceeds to output Red, Yellow and Green
signals for six, one and six clock cycles respectively. It
returns to the “idle” state and repeats the same sequence
forever. Figure 1 describes the algorithm in an
Algorithmic State Machine (ASM) chart.

mailto:shahriyar@aiub.edu
mailto:jcupal@uwyo.edu

To
con
FS
and
cou
(Co
ind
or
sig

B

Ex
sep
seq
It
sta
and
Ins
han
als
blo
con
tran

The two always blocks, running in parallel, ensure that
explicit style code models the hardware exactly.
However, this feature makes the code harder to read and
maintain. Here, the designer always has to take into
account the operation of both these blocks simultaneously
to understand the operation of the FSM. This makes it
harder to follow the algorithm. Furthermore, when the
number of states is large, the case statement, which has a
“go-to” structure, can become very long and clumsy and
thus even harder to read and maintain.

 M

1

1PRL
initia
CPL
Figure 1: ASM chart for the explicit FS
 realize the design specifications, this FSM has to
trol a counter and a comparator in its datapath. The

M can control this counter through output signals (Clr
 Inc) that can be used to clear and increment the
nter. The comparator can output a signal
unt_LT_5) that can be fed back to the FSM to
icate to it whether the value of count is less than five
not. In this case a low value in Count_LT_5 signal
nifies that the value of count is less than five.

Verilog HDL Description, Logic Synthesis and
Timing Verification

plicit style Verilog HDL, as shown in Figure 2, uses
arate always blocks to model combinational and
uential logic. The first always block is level-sensitive.
models the combinational logic that generates next
te signals (NS) and outputs (Red, Yellow, Green, Clr
 Inc). This logic is modeled with a case statement.
ide this case statement, conditional state transitions are
dled with if-else structures. These if-else structures are

o utilized to assert Mealy outputs. The second always
ck is edge-sensitive. It models the sequential logic that
tains a present state register, which performs state
sitions [1], [5].

Figure 3: Post-Route Timing Sim

D is an asynchronous global reset signal meant for
lizing flip-flops for designs that are targeted to Xilinx
Ds.

 Figure 2: Verilog HDL code for the explicit FSM

The behavior of the FSM, as shown in the post-route
timing simulation (Figure 3), is what a designer would
expect. For example, values of present state (PS) and the
inputs (Pb, Count_LT_5) just prior to the positive edges
of the system clock (Clock) determine the next state (NS)
of the machine. The values of NS are transferred to PS at
every positive edge of the Clock by the present state
register. Here, Mealy Clr signal (in state 0) and the
Mealy Inc signal (in state 1) exactly follow the inputs
they are sensitive to (Pb and Count_LT_5).

ulation for the explicit FSM

The FSM inferred two flip-flops and thirty-six gates in
the logic synthesis process. The flip-flop count was
indeed expected for an FSM with four states.

3 The Behavior of an Example Mealy FSM Coded

In implicit style

A Design Specifications and Algorithm
A simple FSM can be designed that is coded in implicit
style Verilog HDL and satisfies the same design
specifications as the example explicit FSM. The implicit
algorithm for this FSM, as shown in figure 4, models its
operation as an “evolution of activity within a cyclic
behavior” [2].

In im
tran
--wi
whil
loop
mac
expl
state
cond
whil
state
whil
== 1

The
the
struc
if s
exam
algo
ente

when the machine has to transition from state 3 to state 0
(when the condition for the second while loop becomes
false) [1], [5].

In implicit style, Mealy outputs can be handled inside if
or if-else structures. Here, the Mealy Clr signal in state 0
and Mealy Inc signals in state 1 are asserted within if
structures [1], [5].

B Verilog HDL Description, Logic Synthesis and

Timing Verification
The Verilog HDL description for the implicit FSM as
shown in Figure 5, illustrates that it follows the above
algorithm exactly. In implicit style, there is a single edge-
sensitive always block. It contains multiple event control
expressions (i.e. @(posedge Clock). They describe the
progression of states in a nice sequential manner. One can
easily see the flow of the algorithm. There are no
references to next states in the code. The always block
models both combinational and sequential logic. Here,
the designer can avoid concentrating on details of the
hardware architecture. All these features make an implicit
code easier to read and maintain [1], [2], [5].

 M
Figure 4: ASM chart for the implicit FS
plicit style, the designer models the conditional state
sitions---which are inherent in most FSM algorithms-
th if structures and while loops. It utilizes top-testing
e loops, to model the bottom-testing “do-while”
ing structures, which in this case describe the
hine’s operation in state 1 and state 3. Here, unlike
icit style, conditions are evaluated before entering a
 rather than just after it. However, properly written
itions for these while loops can preserve the “do-
e-ness” of these transitions (i.e. the FSM staying in a
 at least for one clock cycle). For example the first
e loop evaluates a condition (PS != 1 || Count_LT_5
) that is true in state 0 at least once [1], [5].

 “do-while” structure that describes the operation of
explicit version in state 0, is realized here by an if
ture. By utilizing the cyclic nature of algorithms, this

tructure is made recursive like a while loop. For
ple, when Pb has a low value in state 0, the

rithm forces the machine to exit the algorithm and
r state 0 upon reentry. This is exactly what happens

D
th
(R
si
im
po
st
tr
th
si
Figure 5: Verilog HDL code for the implicit FSM
espite the nice features of implicit style, the nature of
e code generates a one-clock cycle delay in the outputs
ed, Yellow, Green, Clr, Inc) and the present state

gnals (PS) as compared to explicit style. The intent of
plicit style is to evaluate the values of inputs just after
sitive edges of the Clock for determining the next

ates of the machine. As a consequence, the machine
ansitions from state 0 to state 1 one-clock-cycle later
an its explicit version. This is evident in the functional
mulation that is shown in figure 6. Here, both Moore

and Mealy outputs are delayed by one clock cycle. In
addition to that, here, a Mealy output (i.e. Clr in state 0)
cannot follow the input it is sensitive to if the input is an
asynchronous signal (like Pb) and it glitches.

The FSM inferred nine flip-flops and fifty-three gates in
the logic synthesis process2. The flip-flop count can be
accounted for by analyzing the architecture of the
synthesized hardware. Here, two flip-flops are inferred
for the multiple wait state register, two for the present
state register and five for the output register. In implicit
style the multiple wait state register is the register that
performs state transitions. It transfers the value of next
state signals (NS) to multiple wait state signals (MWS) at
every positive edge of the Clock. The multiple wait state
signals (MWS) are registered by the present state register
to generate the present state signals (PS).

Here the signals coming out of the combinational logic
are referred to as NRed, NYellow, NGreen, NClr and
NInc for convenience since the names assigned by the
synthesis tool are very long. They are registered by the
output register to generate the actual outputs (Red,
Yellow, Green, Clr, Inc).

The reader should note that the operation of the
synthesized hardware is realized by the collective
operation of the combinational logic and the above-
mentioned registers. However, this architecture of the
synthesized hardware or the operation of its various
components is implicit in the code.

The post-route timing simulation showed that the
functionality of the FSM did not remain intact. For
example, the FSM stayed in state 1 and state 3 for one
extra clock cycle, as shown in Figure 7. This happens

because the counter is not sensitive to NInc; it is sensitive
to Inc, which is always one-clock-cycle “late”. Therefore,
when Count_LT_5 takes a low value, say in state 1, NInc
is de-asserted immediately but it cannot instantly stop the
counter from incrementing. The Inc signal is de-asserted
one clock cycle later than NInc. By that time, the counter
has counted up to six, when it should have stopped at
five.

4

A

T
a
A
l
5

M

NRed

NYellow

NGreen

NClr

NInc

MWS
Figure 6: Functional Simulation for the explicit FS
 A Process To Remove the Delay Problem In
Implicit FSMs

 Top-Down Design Flow in Xilinx 3.1i ISE EDA
Tool

he FSM designs discussed in the paper were verified
nd implemented with Xilinx 3.1i ISE Electronic Design
utomation (EDA) tool. This tool uses FPGA Express

ogic synthesis engine from Synopsys and ModelSim XE
.3d simulator from Model Technology.

M
Figure7: Post-Route Timing Simulation for the explicit FS
2Before synthesizing an implicit code, the #1 delays
contained in the event control expressions [@(posedge
Clock)..] have to be commented out [5].

In a typical design project in Xilinx 3.1i ISE design
environment, the RTL description of a design and its test
vectors are contained in files with .v and .tf extensions
respectively. A functional simulation can be performed
on this .v file. The logic synthesis process takes this .v file
and outputs a text file with .edn extension. This file
serves as the input to the place and route tool, which
outputs a binary file with .ngd extension. At this point the
designer has to perform a process called ngd2ver in a
DOS prompt to generate post-route model of the design.
This process takes in the .ngd file and outputs a .v file
containing the post-route Verilog model, and a file with
.sdf extension that contains the timing delay information.
A post-route timing simulation can be performed on this
new .v file in a new design project. Finally the
programming process takes the .ngd file, residing in the
original design project, and creates a programming file
with .cdf extension. Now the programming tool can
download the design into a target technology. This top-
down design flow is shown in figure 8.

B The Modification Process for Implicit FSMs
A modification process has been developed to removes
the delay problem in implicit FSMs. It basically involves
removing the flip-flops in the output register and the
present state register by modifying the netlist (.edn file)
coming out of the logic synthesis process. The behavior
of this “modified” implicit design can be verified by post-
route timing simulations. The modification process
consists of some simple steps as shown in figure 9.

I S
First,
buffe
the li
netlis
and c
II S
The n
regist
FSM,
Red_
PS_re
He ca
In ea
refere
be FD
from
flop.
III S
In th
carry
menti
wires
Clock
IV S
The d
the ou
buffe
flip-f
For e
signa
Red..

Figure 8: Top-down Design Flow in Xilinx 3.1i
ISE Design Environment
Figure 9: Flow Chart for the Modification
Process for Implicit FSMs
tep One
 the designer has to add the library cell of a simple
r called BUF3. To do that, the designer has to detect
brary cell of an output buffer called OBUF in the
t (.edn file), copy and paste it below the OBUF cell
hange the cell name to BUF.
tep Two
ext step is to identify the flip-flops in the output
er and the present state register. In the example
 the designer would find these flip-flops listed as
reg, Yellow_reg, Green_reg, Clr_reg, Inc_reg,
g_1 "PS_reg<1>" and PS_reg_0 "PS_reg<0>".
n rename them as Red_buf, Yellow_buf and so on.

ch case, the flip-flop type is listed beside the cell
nce (cellRef). In this case, the cell reference would
CP. The designer should change the cell reference

FDCP to BUF3. Here, FDCP refers to a D type flip-

tep Three
is step the designer should identify the wires

ing the Clock signal to the output flip-flops
oned above, and remove them. Typically these
 would be described under the lines that read (net
..(joined..(portRef Clock).
tep Four
esigner should route the input and output signals of
tput flip-flops to the input and output signals of the

rs that replaced them. So the D and Q ports of the
lops should now be the I and O ports of the buffers.
xample, the Q port of the flip-flop driving the Red
l should read (net Red..(portRef O) instead of (net
(portRef Q), after this step.

 3 It was noticed that, in CPLD implementations, the netlist (.edn
file) would typically have OBUF cells since the synthesis tool
uses OBUF type buffers to drive the outputs from the FDCP
type flip-flops.

V Step Five
Finally, the wires carrying clear (CLR) and preset (PRE)
signals to the output flip-flops should be identified, and
then removed. For example, the netlist fragment that
describes the wires carrying clear and preset signals to
the Red_reg flip-flop reads (net
N61...joined..(portRef..CLR..(instanceRefRed_reg)..(port
RefPRE….(instanceRef Red_reg)). So the modified netlist
should not have it.

C The Results of the Modification Process
The post-route simulation4 reveals that there are no
delays in the present state signals or the outputs. There
are glitches in some signals but they have no effect on the
overall operation of the machine. MWS, NRed, NYellow,
NGreen, NClr and NInc signals are identical to PS, Red,
Yellow, Green, Clr and Inc signals respectively. Mealy
Clr (in state 0) and Mealy Inc signals (in state 1) are
subject to glitches now. Figure 10 illustrates this.

5 Conclusion

The modification process described here removes some
of the major drawbacks in implicit style. First, this
process removes the delays in the present state signals
and the outputs. Second, it maintains the functionality of
an implicit design after synthesis. Third, it removes the
excess sequential hardware that is normally generated
when implicit designs are synthesized.

When a designer applies this methodology to implicit
FSMs, the difference between explicit and implicit styles
is essentially eliminated after synthesis. The designer
now has total freedom in choosing a particular style for
modeling and implementing an FSM.

A comparative analysis of some of the inherent features

of these two coding styles reveals that implicit style has
many advantages over explicit style. The most important
advantage of implicit style lies in its higher level of
abstraction, which primarily manifests itself in the
implicitness of the next states, the capability of modeling
both combinational and sequential logic in the same
always block and the use of high-level looping structures
to realize an algorithm. Since the code reflects, primarily,
the behavior of the FSM, it allows the designer to
concentrate more on algorithm---where typically real
design problems lie--than on architectural details. It is the
belief of the authors that this modification process is an
important step in making implicit style the preferred FSM
coding style of the future.

6 REFERENCES

[1] Arnold, M. G. Verilog Digital Computer Design:

Algorithms to Hardware. Upper Saddle River NJ,
Prentice Hall, 1999, 7-59,100-106,177-196.

[2] Ciletti, M. D. Modeling, Synthesis and Rapid
Prototyping with Verilog HDL. Upper Saddle River
NJ, Prentice Hall, 1999, 238-260, 378-409, 463-464.

[3] Thomas, D. E., and Moorby, P. R. The Verilog
Hardware Description Language (fifth edition).
Boston MA, Kluwer Academic Publishers, 2002, 53-
57, 82-88, 195-208.

[4] Lee, J. M. Verilog Quickstart: A Practical Guide to
Simulation and Synthesis in Verilog (third edition).
Boston MA, Kluwer Academic Publishers, 2002,
116-117, 169-186.

[5] Arnold, M. G. and Sample, N. J. (eds.). Guidelines
for Safe Simulation and Synthesis of Implicit Style
Verilog. Proc. 7th International Verilog HDL
Conference (Santa Clara, California, March 15-17,
1998), 55-66.

NRed

NYellow

NGreen

NClr

NInc

M
4 The authors captur
here, after implemen
with a logic analyzer
be provided for the r

MWS
 Figure 10: Post-Route Timing Simulation for the Modified Implicit FS
ed the operation of all the FSMs discussed
ting them in Xilinx 95108-PC84 CPLDs,
. The snaps confirmed the results and can

eviewers if needed.

	American International University-Bangladesh, Dhaka, Dhaka-1213, Bangladesh, shahriyar@aiub.edu
	University of Wyoming, Laramie, WY 82071, USA, jcupal@uwyo.edu
	Introduction
	The Behavior of an Example Mealy FSM Coded In Explicit Style
	Design Specifications and Algorithm
	Verilog HDL Description, Logic Synthesis and Timing Verification

	The Behavior of an Example Mealy FSM Coded In implicit style
	
	Design Specifications and Algorithm
	Verilog HDL Description, Logic Synthesis and Timing Verification

	A Process To Remove the Delay Problem In Implicit FSMs
	Top-Down Design Flow in Xilinx 3.1i ISE EDA Tool
	The Modification Process for Implicit FSMs
	Step One
	Step Two
	Step Three
	Step Four
	Step Five

	The Results of the Modification Process

	Conclusion
	REFERENCES

