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Abstract

When a Finite Sate Machine (FSM) is modeled in
implicit style Verilog HDL, values of inputs just after
active edges of the system clock determine the next states
of the machine. Synthesis tools interpret this feature by
inserting D-type flip-flops at the present state signals and
the outputs. This interpretation delays these signals by
one clock cycle as compared to an FSM synthesized from
explicit style Verilog HDL code. In synchronous design,
this delay is both unwanted and unnecessary. In certain
cases, this delay creates pre and post-synthesis
simulation mismatches. A technique has been devel oped
to remove these flip-flops after synthesis, and prior to
place and route. This allows designers to produce
implicit FSMs that deliver correct functionality both
before and after synthesis and operate with the same
speed as an explicit FSM. Since implicit style has a
higher level of abstraction, this modification process can
provide a designer a more abstract and perhaps, a better
method to model and implement an FSM.

1 Introduction

In digital hardware design, designers often partition
hardware into FSMs and datapath components. It is
possible to write synthesizable Verilog HDL code for an
FSM in two ways. explicit style and implicit style [1],
(2], (3], [4]. [3].

Explicit style of coding models the operation of an FSM
as the combined operation of its combinational and
sequential components. That is why it requires modeling
these two components separately. In this coding style,
and in actual hardware, values of inputs just prior to
active edges of the system clock determine the next states
of the machine. Here, a Mealy output can glitch. These
features alow explicit style to accurately model the
architecture and the operation of the synthesized FSM.

In contrast, implicit style closely models the behavior of
an FSM. Here, there is no separation between
combinational and sequential logic. In fact, implicit code
hides the details of the hardware architecture from the
designer’sview [1], [2], [3], [4], [5].

Inimplicit style, values of inputsjust after active edges of
the system clock determine the next states of the
machine. Synthesis tools interpret this feature through
adding D type flip-flops to present state signals and
outputs. This delay is neither necessary nor desired for
realizing many design specifications. Since al the outputs
are registered, a Mealy output cannot glitch, in this case.
Furthermore, when an implicit FSM has to control certain
datapath elements (i.e. counter), this delay can cause pre
and post-synthesis simulation mismatches.

A technique has been developed to remove these output
flip-flops after synthesis, and prior to place and route, in
Xilinx 3.1i ISE design environment. This paper gives the
details of this modification process. Basically it consists
of identifying the flip-flops in a text file coming out of
the synthesis tool (FPGA Express) and replacing them
with simple buffers. Post-route simulations show that a
“modified” implicit FSM preserves the correct
functionality even after synthesis and operatesjust like an
explicit FSM---without the delays in the outputs.

2 TheBehavior of an Example Mealy FSM Coded
In Explicit Style

A Design Specificationsand Algorithm

A simple FSM can be designed to illustrate the behavior
of explicit style Verilog HDL. This FSM waits for an
external input Pb to go highin anidle “state” and when it
does, the FSM proceeds to output Red, Y ellow and Green
signals for six, one and six clock cycles respectively. It
returns to the “idle” state and repeats the same sequence
forever. Figure 1 describes the algorithm in an
Algorithmic State Machine (ASM) chart.
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Figure 1: ASM chart for the explicit FSM

To realize the design specifications, this FSM has to
control a counter and a comparator in its datapath. The
FSM can control this counter through output signals (Clr
and Inc) that can be used to clear and increment the
counter. The comparator can output a signa
(Count_ LT _5) that can be fed back to the FSM to
indicate to it whether the value of count is less than five
or not. In this case a low value in Count LT 5 signal
signifiesthat the value of count isless than five.

B Verilog HDL Description, Logic Synthesisand
Timing Verification

Explicit style Verilog HDL, as shown in Figure 2, uses
separate always blocks to model combinational and
sequential logic. The first always block is level-sensitive.
It models the combinational logic that generates next
state signals (NS) and outputs (Red, Yellow, Green, Clr
and Inc). This logic is modeled with a case statement.
Inside this case statement, conditional state transitions are
handled with if-else structures. These if-else structures are
aso utilized to assert Mealy outputs. The second always
block is edge-sensitive. It models the sequential logic that
contains a present state register, which performs state
transitions[1], [5].

The two always blocks, running in parallel, ensure that
explicit style code models the hardware exactly.
However, this feature makes the code harder to read and
maintain. Here, the designer always has to take into
account the operation of both these blocks simultaneously
to understand the operation of the FSM. This makes it
harder to follow the algorithm. Furthermore, when the
number of statesislarge, the case statement, which has a
“go-to” structure, can become very long and clumsy and
thus even harder to read and maintain.

medule MizedEzplicit_ Controller { PRLD, Pb, Clock, Count_LT_5, Red, Tellow, Green,

Clr, Inc, PS),
fhinput, cutput, wire, reg declarations

always @ (Pb or P53 or Count_LT_5)
begin
Fed=0; Yellow =0, Green=0; Clr =0; Inc =10,

case (P2
0 if (P =0) IS =0;
elsebegin Clr=1, N3 =1; end

1: begin Red =1,
if (Count_LT 5= 1 beginInc=1, 3 =1, end
else NS =2, end

2: begin Tellow =1, Clr=1, 13 =3; end

2 begin Green=1;Inc =1,
if (Count LT 5=1N3=73,
else IS =0; end

default: beginRed =0, Yellow=0; Green =0, Clr =0, Inc = 0; N3 =10; end
endcase

end

always (@ (posedge Clock)
PS e=15,

endmodule

Figure2: Verilog HDL codefor the explicit FSM

The behavior of the FSM, as shown in the post-route
timing simulation (Figure 3), is what a designer would
expect. For example, values of present state (PS) and the
inputs (Pb, Count_LT_5) just prior to the positive edges
of the system clock (Clock) determine the next state (NS)
of the machine. The values of NS are transferred to PS at
every positive edge of the Clock by the present state
register. Here, Mealy Clr signa (in state 0) and the
Medy Inc signal (in state 1) exactly follow the inputs
they are sensitive to (Pb and Count_LT_5).
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Figure 3: Post-Route Timing Simulation for the explicit FSM

'PRLD is an asynchronous global reset signal meant for
initializing flip-flops for designs that are targeted to Xilinx
CPLDs.



The FSM inferred two flip-flops and thirty-six gates in
the logic synthesis process. The flip-flop count was
indeed expected for an FSM with four states.

3 TheBehavior of an Example Mealy FSM Coded
Inimplicit style

A Design Specifications and Algorithm

A simple FSM can be designed that is coded in implicit
style Verilog HDL and satisfies the same design
specifications as the example explicit FSM. The implicit
algorithm for this FSM, as shown in figure 4, models its
operation as an “evolution of activity within a cyclic
behavior” [2].

Figure4: ASM chart for theimplicit FSM

Inimplicit style, the designer models the conditional state
transitions---which are inherent in most FSM &l gorithms-
--with if structures and while loops. It utilizes top-testing
while loops, to model the bottom-testing “do-while”
looping structures, which in this case describe the
machine’s operation in state 1 and state 3. Here, unlike
explicit style, conditions are evaluated before entering a
state rather than just after it. However, properly written
conditions for these while loops can preserve the “do-
while-ness’ of these transitions (i.e. the FSM staying in a
state at least for one clock cycle). For example the first
while loop evaluates a condition (PS!=1 || Count LT 5
== 1) that istruein state O at least once [1], [5].

The “do-whil€” structure that describes the operation of
the explicit version in state 0, is redlized here by an if
structure. By utilizing the cyclic nature of algorithms, this
if structure is made recursive like a while loop. For
example, when Pb has a low vaue in state 0O, the
agorithm forces the machine to exit the algorithm and
enter state O upon reentry. This is exactly what happens

when the machine has to transition from state 3 to state O
(when the condition for the second while loop becomes
false) [1], [3].

In implicit style, Mealy outputs can be handled inside if
or if-else structures. Here, the Mealy Clr signal in state O
and Mealy Inc signals in state 1 are asserted within if
structures[1], [5].

B Verilog HDL Description, Logic Synthesis and
Timing Verification

The Verilog HDL description for the implicit FSM as
shown in Figure 5, illustrates that it follows the above
algorithm exactly. In implicit style, thereisasingle edge-
sensitive always block. It contains multiple event control
expressions (i.e. @(posedge Clock). They describe the
progression of statesin a nice sequential manner. One can
easly see the flow of the agorithm. There are no
references to next states in the code. The always block
models both combinational and sequential logic. Here,
the designer can avoid concentrating on details of the
hardware architecture. All these features make an implicit
code easier to read and maintain [1], [2], [5].

module MixedImplicit_Controller (PRLD, Pb, Clock, Count_LT_5, Red, Yellow, Green,

Clr, Inc, P3);
Hinput, output, wire, reg declarations

always
begin

@ (posedge Clock) #1 PS ==10,
Fed=0, Yellow =0, Green =0, Clr =0, Inc =0,

ifPb=1)
begin
Clr=1;
while (S I=1 || Count_LT 5=1)
begin
@ (posedge Clock) #1 PS ==1,
Fed=1, Yellow=0; Green=0, Clr =0, Inc =10,
if (Count LT _5=1)
Inc=1,
end

@ (posedge Clock) #1 PS5 ==2;
Fed=0, Yellow=1;, Green =0, Clr=1; Inc =10,

while (PS5 1=3 || Count LT 5=1)
begin
@ (posedge Clock) #1 PS ==3,
Fed=0, Tellow=0;, Green=1, Clr =0, Inc = 1;
end
end

end
endmodule

Figure5: Verilog HDL codefor theimplicit FSM

Degspite the nice features of implicit style, the nature of
the code generates a one-clock cycle delay in the outputs
(Red, Yéellow, Green, Clr, Inc) and the present state
signals (PS) as compared to explicit style. The intent of
implicit style is to evaluate the values of inputs just after
positive edges of the Clock for determining the next
states of the machine. As a consequence, the machine
transitions from state O to state 1 one-clock-cycle later
than its explicit version. This is evident in the functional
simulation that is shown in figure 6. Here, both Moore
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and Mealy outputs are delayed by one clock cycle. In
addition to that, here, a Mealy output (i.e. Clr in state 0)
cannot follow the input it is sensitive to if the input is an
asynchronous signal (like Pb) and it glitches.

The FSM inferred nine flip-flops and fifty-three gates in
the logic synthesis process”. The flip-flop count can be
accounted for by analyzing the architecture of the
synthesized hardware. Here, two flip-flops are inferred
for the multiple wait state register, two for the present
state register and five for the output register. In implicit
style the multiple wait state register is the register that
performs state transitions. It transfers the value of next
state signals (NS) to multiple wait state signals (MWS) at
every positive edge of the Clock. The multiple wait state
signals (MWYS) are registered by the present state register
to generate the present state signals (PS).

Here the signals coming out of the combinational logic
are referred to as NRed, NYellow, NGreen, NCIr and
NInc for convenience since the names assigned by the
synthesis tool are very long. They are registered by the
output register to generate the actual outputs (Red,
Yellow, Green, Clr, Inc).

The reader should note that the operation of the
synthesized hardware is readlized by the collective
operation of the combinational logic and the above-
mentioned registers. However, this architecture of the
synthesized hardware or the operation of its various
components isimplicit in the code.

The post-route timing simulation showed that the
functionality of the FSM did not remain intact. For
example, the FSM stayed in state 1 and state 3 for one
extraclock cycle, as shown in Figure 7. This happens
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because the counter is not sensitive to NInc; it is sensitive
to Inc, which is always one-clock-cycle “late”. Therefore,
when Count_LT_5 takesalow value, say in state 1, NInc
is de-asserted immediately but it cannot instantly stop the
counter from incrementing. The Inc signal is de-asserted
one clock cycle later than NInc. By that time, the counter
has counted up to six, when it should have stopped at
five.

I}

T L
(TITTT T ITITTTRIT

Figure 6: Functional Simulation for the explicit FSM

4 A Process To Remove the Delay Problem In
Implicit FSMs

A Top-Down Design Flow in Xilinx 3.1i ISE EDA
Tool

The FSM designs discussed in the paper were verified

and implemented with Xilinx 3.1i I1SE Electronic Design

Automation (EDA) tool. This tool uses FPGA Express

logic synthesis engine from Synopsys and ModelSim XE

5.3d simulator from Model Technology.

Figure7: Post-Route Timing Simulation for the explicit FSM

*Before synthesizing an implicit code, the #1 delays
contained in the event control expressions [@(posedge
Clock)..] have to be commented out [5].



R.TL Description Stirrrtus
(Vailog HDL) <:> (lesthench)
v file i Af file
R.TL Functional Sirmilation
(Modeldim 2E 5.3d)
¥
Logic Symthesis

(FPGA Express)

l edh file
| Modi fication Process |
cedn file (roodified)
Autorratic Flace and Route Genetating Post Route
Verilog Model (ngdiver)
g fle (DOS Protopt)
ﬁv file, . sdf file
Stitmalus
(testbench)
l if file
Post-Roue Timing
Sirrnlation
(Model3im XE 5. 3d)
¥
‘ Programming ‘

l cdf file

Target Technology

Hilirez #5108-PC34 CPLD

Figure 8: Top-down Design Flow in Xilinx 3.1i
| SE Design Environment

In a typica design project in Xilinx 3.1i ISE design
environment, the RTL description of a design and its test
vectors are contained in files with .v and .tf extensions
respectively. A functional simulation can be performed
onthis.vfile. Thelogic synthesis process takes this .v file
and outputs a text file with .edn extension. This file
serves as the input to the place and route tool, which
outputs a binary file with .ngd extension. At this point the
designer has to perform a process called ngd2ver in a
DOS prompt to generate post-route model of the design.
This process takes in the .ngd file and outputs a .v file
containing the post-route Verilog model, and a file with
.sdf extension that contains the timing delay information.
A post-route timing simulation can be performed on this
new .v file in a new design project. Finaly the
programming process takes the .ngd file, residing in the
original design project, and creates a programming file
with .cdf extension. Now the programming tool can
download the design into a target technology. This top-
down design flow is shown in figure 8.

B TheMadification Processfor Implicit FSMs

A modification process has been developed to removes
the delay problem in implicit FSMs. It basically involves
removing the flip-flops in the output register and the
present state register by modifying the netlist (.edn file)
coming out of the logic synthesis process. The behavior
of this“modified” implicit design can be verified by post-
route timing simulations. The modification process
consists of some simple steps as shown in figure 9.
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Figure 9: Flow Chart for the M odification
Processfor Imnlicit FSM <

I Step One

First, the designer has to add the library cell of asimple
buffer called BUF. To do that, the designer has to detect
the library cell of an output buffer called OBUF in the
netlist (.edn file), copy and paste it below the OBUF cell
and change the cell name to BUF.

Il Step Two

The next step is to identify the flip-flops in the output
register and the present state register. In the example
FSM, the designer would find these flip-flops listed as
Red reg, Yelow reg, Green_reg, Clr_reg, Inc_reg,
PS reg 1 "PS reg<1>" and PSreg 0 "PS reg<0>".
He can rename them as Red_buf, Yellow_buf and so on.
In each case, the flip-flop type is listed beside the cell
reference (cellRef). In this case, the cell reference would
be FDCP. The designer should change the cell reference
from FDCP to BUF®. Here, FDCP refersto a D type flip-
flop.

Il Step Three

In this step the designer should identify the wires
carrying the Clock signal to the output flip-flops
mentioned above, and remove them. Typicaly these
wires would be described under the lines that read (net
Clock..(joined..(portRef Clock).

IV Step Four

The designer should route the input and output signals of
the output flip-flops to the input and output signals of the
buffers that replaced them. So the D and Q ports of the
flip-flops should now be the | and O ports of the buffers.
For example, the Q port of the flip-flop driving the Red
signal should read (net Red..(portRef O) instead of (net
Red..(portRef Q), after this step.

% It was noticed that, in CPLD implementations, the netlist (.edn
file) would typically have OBUF cells since the synthesis tool
uses OBUF type buffers to drive the outputs from the FDCP
type flip-flops.
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V StepFive

Finally, the wires carrying clear (CLR) and preset (PRE)
signals to the output flip-flops should be identified, and
then removed. For example, the netlist fragment that
describes the wires carrying clear and preset signals to
the Red_reg flip-flop reads (net
N61...joined..(portRef..CLR..(instanceRefRed_reg)..(port
RefPRE....(instanceRef Red_reg)). So the modified netlist
should not have it.

C TheResultsof the Modification Process

The post-route simulation® reveals that there are no
delays in the present state signals or the outputs. There
are glitches in some signals but they have no effect on the
overall operation of the machine. MWS, NRed, NY ellow,
NGreen, NClIr and NInc signals are identical to PS, Red,
Yellow, Green, Clr and Inc signals respectively. Mealy
Clr (in state 0) and Mealy Inc signals (in state 1) are
subject to glitches now. Figure 10 illustrates this.

5 Conclusion

The modification process described here removes some
of the maor drawbacks in implicit style. First, this
process removes the delays in the present state signals
and the outputs. Second, it maintains the functionality of
an implicit design after synthesis. Third, it removes the
excess sequential hardware that is normally generated
when implicit designs are synthesized.

When a designer applies this methodology to implicit
FSMs, the difference between explicit and implicit styles
is essentialy eliminated after synthesis. The designer
now has total freedom in choosing a particular style for
modeling and implementing an FSM.

A comparative analysis of some of the inherent features
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of these two coding styles reveals that implicit style has
many advantages over explicit style. The most important
advantage of implicit style lies in its higher level of
abstraction, which primarily manifests itself in the
implicitness of the next states, the capability of modeling
both combinational and sequential logic in the same
always block and the use of high-level looping structures
to realize an algorithm. Since the code reflects, primarily,
the behavior of the FSM, it alows the designer to
concentrate more on algorithm---where typically real
design problems lie--than on architectural details. It isthe
belief of the authors that this modification process is an
important step in making implicit style the preferred FSM
coding style of the future.
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Figure 10: Post-Route Timing Simulation for the M odified |mplicit FSM

4 The authors captured the operation of all the FSMs discussed
here, after implementing them in Xilinx 95108-PC84 CPLDs,
with alogic analyzer. The snaps confirmed the results and can
be provided for the reviewersif needed.
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