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Abstract 
 
 When a Finite State Machine (FSM) is modeled in 
implicit style Verilog HDL, values of inputs just after 
active edges of the system clock determine the next states 
of the machine. Synthesis tools interpret this feature by 
inserting D-type flip-flops at the present state signals and 
the outputs. This interpretation delays these signals by 
one clock cycle as compared to an FSM synthesized from 
explicit style Verilog HDL code. In synchronous design, 
this delay is both unwanted and unnecessary. In certain 
cases, this delay creates pre and post-synthesis 
simulation mismatches. A technique has been developed 
to remove these flip-flops after synthesis, and prior to 
place and route. This allows designers to produce 
implicit FSMs that deliver correct functionality both 
before and after synthesis and operate with the same 
speed as an explicit FSM. Since implicit style has a 
higher level of abstraction, this modification process can 
provide a designer a more abstract and perhaps, a better 
method to model and implement an FSM. 
 
1 Introduction 
 
In digital hardware design, designers often partition 
hardware into FSMs and datapath components. It is 
possible to write synthesizable Verilog HDL code for an 
FSM in two ways: explicit style and implicit style [1], 
[2], [3], [4], [5].  
 
Explicit style of coding models the operation of an FSM 
as the combined operation of its combinational and 
sequential components. That is why it requires modeling 
these two components separately. In this coding style, 
and in actual hardware, values of inputs just prior to 
active edges of the system clock determine the next states 
of the machine. Here, a Mealy output can glitch. These 
features allow explicit style to accurately model the 
architecture and the operation of the synthesized FSM. 
 

In contrast, implicit style closely models the behavior of 
an FSM. Here, there is no separation between 
combinational and sequential logic. In fact, implicit code 
hides the details of the hardware architecture from the 
designer’s view [1], [2], [3], [4], [5]. 
 
In implicit style, values of inputs just after active edges of 
the system clock determine the next states of the 
machine. Synthesis tools interpret this feature through 
adding D type flip-flops to present state signals and 
outputs. This delay is neither necessary nor desired for 
realizing many design specifications. Since all the outputs 
are registered, a Mealy output cannot glitch, in this case. 
Furthermore, when an implicit FSM has to control certain 
datapath elements (i.e. counter), this delay can cause pre 
and post-synthesis simulation mismatches.  
  
A technique has been developed to remove these output 
flip-flops after synthesis, and prior to place and route, in 
Xilinx 3.1i ISE design environment. This paper gives the 
details of this modification process. Basically it consists 
of identifying the flip-flops in a text file coming out of 
the synthesis tool (FPGA Express) and replacing them 
with simple buffers. Post-route simulations show that a 
“modified” implicit FSM preserves the correct 
functionality even after synthesis and operates just like an 
explicit FSM---without the delays in the outputs.  
 
2 The Behavior of an Example Mealy FSM Coded 

In Explicit Style 
 
A Design Specifications and Algorithm 
A simple FSM can be designed to illustrate the behavior 
of explicit style Verilog HDL. This FSM waits for an 
external input Pb to go high in an idle “state” and when it 
does, the FSM proceeds to output Red, Yellow and Green 
signals for six, one and six clock cycles respectively. It 
returns to the “idle” state and repeats the same sequence 
forever. Figure 1 describes the algorithm in an 
Algorithmic State Machine (ASM) chart. 
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The two always blocks, running in parallel, ensure that 
explicit style code models the hardware exactly. 
However, this feature makes the code harder to read and 
maintain. Here, the designer always has to take into 
account the operation of both these blocks simultaneously 
to understand the operation of the FSM. This makes it 
harder to follow the algorithm. Furthermore, when the 
number of states is large, the case statement, which has a 
“go-to” structure, can become very long and clumsy and 
thus even harder to read and maintain. 
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Figure 1: ASM chart for the explicit FS
 realize the design specifications, this FSM has to 
trol a counter and a comparator in its datapath. The 

M can control this counter through output signals (Clr 
 Inc) that can be used to clear and increment the 
nter. The comparator can output a signal 
unt_LT_5) that can be fed back to the FSM to 
icate to it whether the value of count is less than five 
not.  In this case a low value in Count_LT_5 signal 
nifies that the value of count is less than five. 

Verilog HDL Description, Logic Synthesis and 
Timing Verification 

plicit style Verilog HDL, as shown in Figure 2, uses 
arate always blocks to model combinational and 
uential logic. The first always block is level-sensitive. 
models the combinational logic that generates next 
te signals (NS) and outputs (Red, Yellow, Green, Clr 
 Inc). This logic is modeled with a case statement. 
ide this case statement, conditional state transitions are 
dled with if-else structures. These if-else structures are 

o utilized to assert Mealy outputs. The second always 
ck is edge-sensitive. It models the sequential logic that 
tains a present state register, which performs state 
sitions [1], [5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Post-Route Timing Sim

D is an asynchronous global reset signal meant for 
lizing flip-flops for designs that are targeted to Xilinx 
Ds. 
 
 Figure 2: Verilog HDL code for the explicit FSM

The behavior of the FSM, as shown in the post-route 
timing simulation (Figure 3), is what a designer would 
expect. For example, values of present state (PS) and the 
inputs (Pb, Count_LT_5) just prior to the positive edges 
of the system clock (Clock) determine the next state (NS) 
of the machine. The values of NS are transferred to PS at 
every positive edge of the Clock by the present state 
register. Here, Mealy Clr signal (in state 0) and the 
Mealy Inc signal (in state 1) exactly follow the inputs 
they are sensitive to (Pb and Count_LT_5). 
 
 
 
 
 

 
 
 
 
 
 
 
 
ulation for the explicit FSM 



The FSM inferred two flip-flops and thirty-six gates in 
the logic synthesis process. The flip-flop count was 
indeed expected for an FSM with four states.  
 
3 The Behavior of an Example Mealy FSM Coded 

In implicit style 
 
A Design Specifications and Algorithm 
A simple FSM can be designed that is coded in implicit 
style Verilog HDL and satisfies the same design 
specifications as the example explicit FSM. The implicit 
algorithm for this FSM, as shown in figure 4, models its 
operation as an “evolution of activity within a cyclic 
behavior” [2].  
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when the machine has to transition from state 3 to state 0 
(when the condition for the second while loop becomes 
false) [1], [5].  
 
In implicit style, Mealy outputs can be handled inside if 
or if-else structures. Here, the Mealy Clr signal in state 0 
and Mealy Inc signals in state 1 are asserted within if 
structures [1], [5].  
 
B Verilog HDL Description, Logic Synthesis and 

Timing Verification 
The Verilog HDL description for the implicit FSM as 
shown in Figure 5, illustrates that it follows the above 
algorithm exactly. In implicit style, there is a single edge-
sensitive always block. It contains multiple event control 
expressions (i.e. @(posedge Clock). They describe the 
progression of states in a nice sequential manner. One can 
easily see the flow of the algorithm. There are no 
references to next states in the code. The always block 
models both combinational and sequential logic. Here, 
the designer can avoid concentrating on details of the 
hardware architecture. All these features make an implicit 
code easier to read and maintain [1], [2], [5].  
 
 
 
 
 
 
 
 
 
 
 M 
Figure 4: ASM chart for the implicit FS
plicit style, the designer models the conditional state 
sitions---which are inherent in most FSM algorithms-
th if structures and while loops. It utilizes top-testing 
e loops, to model the bottom-testing “do-while” 
ing structures, which in this case describe the 
hine’s operation in state 1 and state 3. Here, unlike 
icit style, conditions are evaluated before entering a 
 rather than just after it. However, properly written 
itions for these while loops can preserve the “do-
e-ness” of these transitions (i.e. the FSM staying in a 
 at least for one clock cycle). For example the first 
e loop evaluates a condition (PS != 1 || Count_LT_5 
) that is true in state 0 at least once [1], [5].  

 “do-while” structure that describes the operation of 
explicit version in state 0, is realized here by an if 
ture. By utilizing the cyclic nature of algorithms, this 

tructure is made recursive like a while loop. For 
ple, when Pb has a low value in state 0, the 

rithm forces the machine to exit the algorithm and 
r state 0 upon reentry. This is exactly what happens 
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Figure 5: Verilog HDL code for the implicit FSM
espite the nice features of implicit style, the nature of 
e code generates a one-clock cycle delay in the outputs 
ed, Yellow, Green, Clr, Inc) and the present state 

gnals (PS) as compared to explicit style. The intent of 
plicit style is to evaluate the values of inputs just after 
sitive edges of the Clock for determining the next 

ates of the machine. As a consequence, the machine 
ansitions from state 0 to state 1 one-clock-cycle later 
an its explicit version. This is evident in the functional 
mulation that is shown in figure 6. Here, both Moore 



and Mealy outputs are delayed by one clock cycle. In 
addition to that, here, a Mealy output (i.e. Clr in state 0) 
cannot follow the input it is sensitive to if the input is an 
asynchronous signal (like Pb) and it glitches.  
 
The FSM inferred nine flip-flops and fifty-three gates in 
the logic synthesis process2. The flip-flop count can be 
accounted for by analyzing the architecture of the 
synthesized hardware. Here, two flip-flops are inferred 
for the multiple wait state register, two for the present 
state register and five for the output register. In implicit 
style the multiple wait state register is the register that 
performs state transitions. It transfers the value of next 
state signals (NS) to multiple wait state signals (MWS) at 
every positive edge of the Clock. The multiple wait state 
signals (MWS) are registered by the present state register 
to generate the present state signals (PS).  
 
Here the signals coming out of the combinational logic 
are referred to as NRed, NYellow, NGreen, NClr and 
NInc for convenience since the names assigned by the 
synthesis tool are very long. They are registered by the 
output register to generate the actual outputs (Red, 
Yellow, Green, Clr, Inc).  
 
The reader should note that the operation of the 
synthesized hardware is realized by the collective 
operation of the combinational logic and the above-
mentioned registers. However, this architecture of the 
synthesized hardware or the operation of its various 
components is implicit in the code.  
 
The post-route timing simulation showed that the 
functionality of the FSM did not remain intact. For 
example, the FSM stayed in state 1 and state 3 for one 
extra clock cycle, as shown in Figure 7. This happens 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

because the counter is not sensitive to NInc; it is sensitive 
to Inc, which is always one-clock-cycle “late”. Therefore, 
when Count_LT_5 takes a low value, say in state 1, NInc 
is de-asserted immediately but it cannot instantly stop the 
counter from incrementing. The Inc signal is de-asserted 
one clock cycle later than NInc. By that time, the counter 
has counted up to six, when it should have stopped at 
five. 
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Figure 6: Functional Simulation for the explicit FS
 A Process To Remove the Delay Problem In 
Implicit FSMs   

 Top-Down Design Flow in Xilinx 3.1i ISE EDA 
Tool 

he FSM designs discussed in the paper were verified 
nd implemented with Xilinx 3.1i ISE Electronic Design 
utomation (EDA) tool. This tool uses FPGA Express 

ogic synthesis engine from Synopsys and ModelSim XE 
.3d simulator from Model Technology.  

M
Figure7: Post-Route Timing Simulation for the explicit FS
2Before synthesizing an implicit code, the #1 delays 
contained in the event control expressions [@(posedge 
Clock)..] have to be commented out [5].  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a typical design project in Xilinx 3.1i ISE design 
environment, the RTL description of a design and its test 
vectors are contained in files with .v and .tf extensions 
respectively. A functional simulation can be performed 
on this .v file. The logic synthesis process takes this .v file 
and outputs a text file with .edn extension. This file 
serves as the input to the place and route tool, which 
outputs a binary file with .ngd extension. At this point the 
designer has to perform a process called ngd2ver in a 
DOS prompt to generate post-route model of the design. 
This process takes in the .ngd file and outputs a .v file 
containing the post-route Verilog model, and a file with 
.sdf extension that contains the timing delay information. 
A post-route timing simulation can be performed on this 
new .v file in a new design project. Finally the 
programming process takes the .ngd file, residing in the 
original design project, and creates a programming file 
with .cdf extension. Now the programming tool can 
download the design into a target technology. This top-
down design flow is shown in figure 8. 

B The Modification Process for Implicit FSMs 
A modification process has been developed to removes 
the delay problem in implicit FSMs. It basically involves 
removing the flip-flops in the output register and the 
present state register by modifying the netlist (.edn file) 
coming out of the logic synthesis process. The behavior 
of this “modified” implicit design can be verified by post-
route timing simulations. The modification process 
consists of some simple steps as shown in figure 9.   
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Figure 8: Top-down Design Flow in Xilinx 3.1i 
ISE Design Environment 
Figure 9: Flow Chart for the Modification 
Process for Implicit FSMs
tep One 
 the designer has to add the library cell of a simple 
r called BUF3. To do that, the designer has to detect 
brary cell of an output buffer called OBUF in the 
t (.edn file), copy and paste it below the OBUF cell 
hange the cell name to BUF.   
tep Two 
ext step is to identify the flip-flops in the output 
er and the present state register. In the example 
 the designer would find these flip-flops listed as 
reg, Yellow_reg, Green_reg, Clr_reg, Inc_reg, 
g_1 "PS_reg<1>" and PS_reg_0 "PS_reg<0>". 
n rename them as Red_buf, Yellow_buf and so on. 

ch case, the flip-flop type is listed beside the cell 
nce (cellRef). In this case, the cell reference would 
CP. The designer should change the cell reference 

FDCP to BUF3. Here, FDCP refers to a D type flip-
 
tep Three 
is step the designer should identify the wires 

ing the Clock signal to the output flip-flops 
oned above, and remove them. Typically these 
 would be described under the lines that read (net 
..(joined..(portRef Clock). 
tep Four 
esigner should route the input and output signals of 
tput flip-flops to the input and output signals of the 

rs that replaced them. So the D and Q ports of the 
lops should now be the I and O ports of the buffers. 
xample, the Q port of the flip-flop driving the Red 
l should read (net Red..(portRef O) instead of (net 
(portRef Q), after this step. 

 
 
 

   3 It was noticed that, in CPLD implementations, the netlist (.edn
file) would typically have OBUF cells since the synthesis tool
uses OBUF type buffers to drive the outputs from the FDCP
type flip-flops.  



V Step Five 
Finally, the wires carrying clear (CLR) and preset (PRE) 
signals to the output flip-flops should be identified, and 
then removed. For example, the netlist fragment that 
describes the wires carrying clear and preset signals to 
the Red_reg flip-flop reads (net 
N61...joined..(portRef..CLR..(instanceRefRed_reg)..(port
RefPRE….(instanceRef Red_reg)). So the modified netlist 
should not have it. 
 
C The Results of the Modification Process 
The post-route simulation4 reveals that there are no 
delays in the present state signals or the outputs. There 
are glitches in some signals but they have no effect on the 
overall operation of the machine. MWS, NRed, NYellow, 
NGreen, NClr and NInc signals are identical to PS, Red, 
Yellow, Green, Clr and Inc signals respectively. Mealy 
Clr (in state 0) and Mealy Inc signals (in state 1) are 
subject to glitches now. Figure 10 illustrates this.  
 
5 Conclusion 
 
The modification process described here removes some 
of the major drawbacks in implicit style. First, this 
process removes the delays in the present state signals 
and the outputs. Second, it maintains the functionality of 
an implicit design after synthesis. Third, it removes the 
excess sequential hardware that is normally generated 
when implicit designs are synthesized.  
 
When a designer applies this methodology to implicit 
FSMs, the difference between explicit and implicit styles 
is essentially eliminated after synthesis. The designer 
now has total freedom in choosing a particular style for 
modeling and implementing an FSM.  
 
A comparative analysis of some of the inherent features 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of these two coding styles reveals that implicit style has 
many advantages over explicit style. The most important 
advantage of implicit style lies in its higher level of 
abstraction, which primarily manifests itself in the 
implicitness of the next states, the capability of modeling 
both combinational and sequential logic in the same 
always block and the use of high-level looping structures 
to realize an algorithm. Since the code reflects, primarily, 
the behavior of the FSM, it allows the designer to 
concentrate more on algorithm---where typically real 
design problems lie--than on architectural details. It is the 
belief of the authors that this modification process is an 
important step in making implicit style the preferred FSM 
coding style of the future. 
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