
A Methodology to Remove Unwanted Delays in Outputs
and Pre and Post-Synthesis

Simulation Mismatches in Implicit State Machines

Shahriyar M. Rizvi
American International University-Bangladesh,

Dhaka, Dhaka-1213, Bangladesh

Jerry J. Cupal
University of Wyoming,

Laramie, WY 82070, USA

Explicit Coding Style:

Models hardware with 2 (or 3) always blocks

Reference: HDL Chip Design,
Douglas Smith, Doone Publications, ISBN 0-9651934-3-8

Implicit Coding Style:

Models the algorithm with one always block

Reference: Verilog Digital Computer Design, Algorithms into Hardware,
Mark Arnold, Prentice Hall PTR, ISBN 0-13-639253-9

Tools

Design environment: Xilinx ISE v3.1, v5.1.03i

Simulator: ModelSim XE v3.4d, XE v5.6a

Synthesis tool: Synopsys FPGA Express

Implicit Code Style of States

0

1

2

3

Red

Yellow

Green

always
begin

@(posedge clock) #1 PS=0;
Red=0; Yellow=0; Green=0;

@(posedge clock) #1 PS=1;
Red=1; Yellow=0; Green=0;

@(posedge clock) #1 PS=2;
Red=0; Yellow=1; Green=0;

@(posedge clock) #1 PS=3;
Red=0; Yellow=0; Green=1;

end

Functional Simulation:

Implicit Coding Style for Branches

pb 1

0
Red

0

1

always
begin
@(posedge clock) #1 PS=0; Red=0;

if(pb==1)
begin

@(posedge clock) #1 PS=1; Red=1;
end

end

Ideal signals Real signals

Functional Simulation:

Implicit Coding Style for Loops

0
1

0

0 1

1

pb

clr

Red
inc

C_LT_2

pb clr

PS!=1 ||
C_LT_2 ==1

Red
inc

1
1

1

0

0

0

pb clr

PS!=1 ||
C_LT_2 ==1

Red
inc

1
1

1

0

0

0

always
begin
@(posedge clock) #1 PS=0; clr=0; inc=0; Red=0;
if (pb==1)

begin
clr=1;
while(PS!=1 || C_LT_2==1)

begin
@(posedge clock) #1 PS=1; clr=0; inc=1; Red=1;
end

end
end

Ideal signals

Functional Simulation

Real signals

Functional Simulation

Explicit Style Coding with Registered Outputs

Real signals

Conclusion 1

Use ideal signals when doing functional simulations of state
machines coded in implicit style.
ie, Synchronized inputs and no delays in data path elements.

Be aware that non-ideal timing will produce incorrect behavior
in the functional simulation. In fact, timing will be like state
machines coded in explicit style with registered outputs

Hardware Generated in the Synthesis Process

NS &
output
logic

Multiple
Wait
State
register

PS
register

Output
register

clock

inputs

PS

Outputs

Multiple_Wait_State

Next
state

Next output

PS

State Machine Example

Operation after Place-and-Route

Modification Process:
Replace output resisters with buffers

1. Insert simple buffer library cell if it does not exist in file

2. Remove the clock signal from the output flip-flops

3. Remove the clear and preset signals from the output flip-flops

4. Replace the output flip-flops with the buffers

5. Route the input and outputs of the output flip-flops
to the inputs and outputs of the buffers

Hardware After Modification Process

NS &
output
logic

Multiple
Wait
State
register

clock

inputs

PS

Outputs

Multiple_Wait_State

Next
state

Next output

buffer

buffer

PS

Operation after Place-and-Route of Modified Hardware

Conclusion 2

Synthesized hardware straight out of FPGA Express will not
function as expected. In addition, there are extra and
un-necessary flip-flops in the implementation.

If the output of FPGA Express is modified by the process describe
here, the hardware works as expected.

Modification Process

Currently, the modification process is done by manually editing
the .edn file out of FPGA Express. It is necessary to implement
this operation in a program.

Ideally, it would be nice to have this process done as an option in
FPGA Express.

Future Work

In explicit designs, it is possible to model the data path elements
(registers as well as combinational logic) within the code for the
state machine. This allows one to write at a higher, more abstract
level.

This method can also be done in implicit coding, but gives
improper behavior.

always
begin
@(posedge clock) #1 PS=0; Red=0;
if (pb==1)

begin
COUNT <= @(posedge clock) 0;
while(PS!=1 || COUNT<2)

begin
@(posedge clock) #1 PS=1; Red=1;
COUNT <= @(posedge clock) COUNT +1;
end

end
end

pb COUNT<=0

PS!=1 ||
COUNT<2

Red
COUNT<=COUNT+1

1
1

1

0

0

0

Ideal signals

Functional Simulation

Real signals

Functional Simulation

Final Comments

Explicit style coding has a “goto“ look. It is difficult to read the
algorithm by looking at the code.

Implicit style coding follows the algorithm closely. There is a
higher level of abstraction which allows the designer to
concentrate on the algorithm rather than the architectural details.

If one codes in implicit style, you should do functional
simulations with ideal signals, then synthesize and remove the
output flip-flops in the process described here. The real hardware
will work as a design done in explicit style.

